

Documentation for mrcfile.py

Get started by reading the Overview of mrcfile.py and the Usage Guide.

You can also look at the Source documentation.

Table of Contents:

	Overview of mrcfile.py
	Key Features

	Installation

	Basic usage

	Documentation

	Citing mrcfile

	Contributing

	Licence

	Usage Guide
	Opening MRC files
	Normal file access

	Simple data access

	Handling compressed files

	Closing files and writing to disk

	MrcFile subclasses

	File modes

	Permissive read mode

	A note on axis ordering

	Using MrcFile objects
	Accessing the header and data

	Indexing the extended header

	Voxel size

	Keeping the header and data in sync

	Data dimensionality

	Data types

	Dealing with large files
	Memory-mapped files

	Asynchronous opening

	Validating MRC files

	Command line usage
	Validation

	Examining MRC headers

	API overview
	Class hierarchy

	MrcFile attributes and methods

	Source documentation
	mrcfile – Main package
	mrcfile

	Submodules

	mrcfile.bzip2mrcfile module
	bzip2mrcfile

	mrcfile.command_line module
	command_line

	mrcfile.constants module
	constants

	mrcfile.dtypes module
	dtypes

	mrcfile.future_mrcfile module
	future_mrcfile

	mrcfile.gzipmrcfile module
	gzipmrcfile

	mrcfile.load_functions module
	load_functions

	mrcfile.mrcfile module
	mrcfile

	mrcfile.mrcinterpreter module
	mrcinterpreter

	mrcfile.mrcmemmap module
	mrcmemmap

	mrcfile.mrcobject module
	mrcobject

	mrcfile.utils module
	utils

	Functions

	mrcfile.validator module
	validator

Overview of mrcfile.py

mrcfile is a Python implementation of the MRC2014 file format [http://www.ccpem.ac.uk/mrc_format/mrc2014.php], which
is used in structural biology to store image and volume data.

It allows MRC files to be created and opened easily using a very simple API,
which exposes the file’s header and data as numpy [http://www.numpy.org/] arrays. The code runs in
Python 2 and 3 and is fully unit-tested.

This library aims to allow users and developers to read and write
standard-compliant MRC files in Python as easily as possible, and with no
dependencies on any compiled libraries except numpy [http://www.numpy.org/]. You can use it
interactively to inspect files, correct headers and so on, or in scripts and
larger software packages to provide basic MRC file I/O functions.

Key Features

	Clean, simple API for access to MRC files

	Easy to install and use

	Validation of files according to the MRC2014 format

	Seamless support for gzip and bzip2 files

	Memory-mapped file option for fast random access to very large files

	Asynchronous opening option for background loading of multiple files

	Runs in Python 2 & 3, on Linux, Mac OS X and Windows

Installation

The mrcfile library is available from the Python package index [https://pypi.org/project/mrcfile]:

pip install mrcfile

Or from conda-forge [https://anaconda.org/conda-forge/mrcfile]:

conda install --channel conda-forge mrcfile

It is also included in the ccpem-python environment in the CCP-EM [http://www.ccpem.ac.uk]
software suite.

The source code (including the full test suite) can be found on GitHub [https://github.com/ccpem/mrcfile].

Basic usage

The easiest way to open a file is with the mrcfile.open [http://mrcfile.readthedocs.io/en/latest/source/mrcfile.html#mrcfile.open] and mrcfile.new [http://mrcfile.readthedocs.io/en/latest/source/mrcfile.html#mrcfile.new]
functions. These return an MrcFile [http://mrcfile.readthedocs.io/en/latest/usage_guide.html#using-mrcfile-objects] object which represents an MRC file on
disk.

To open an MRC file and read a slice of data:

>>> import mrcfile
>>> with mrcfile.open('tests/test_data/EMD-3197.map') as mrc:
... mrc.data[10,10]
...
array([2.58179283, 3.1406002 , 3.64495397, 3.63812137, 3.61837363,
 4.0115056 , 3.66981959, 2.07317996, 0.1251585 , -0.87975615,
 0.12517013, 2.07319379, 3.66982722, 4.0115037 , 3.61837196,
 3.6381247 , 3.64495087, 3.14059472, 2.58178973, 1.92690361], dtype=float32)

To create a new file with a 2D data array, and change some values:

>>> array = np.zeros((5, 5), dtype=np.int8)
>>> with mrcfile.new('tmp.mrc') as mrc:
... mrc.set_data(array)
... mrc.data[1:4,1:4] = 10
... mrc.data
...
array([[0, 0, 0, 0, 0],
 [0, 10, 10, 10, 0],
 [0, 10, 10, 10, 0],
 [0, 10, 10, 10, 0],
 [0, 0, 0, 0, 0]], dtype=int8)

The data will be saved to disk when the file is closed, either automatically at
the end of the with block (like a normal Python file object) or manually by
calling close(). You can also call flush() to write any changes to disk
and keep the file open.

To validate an MRC file:

>>> mrcfile.validate('tests/test_data/EMD-3197.map')
File does not declare MRC format version 20140 or 20141: nversion = 0
False

>>> mrcfile.validate('tmp.mrc')
True

Documentation

Full documentation is available on Read the Docs [http://mrcfile.readthedocs.org].

Citing mrcfile

If you find mrcfile useful in your work, please cite:

Burnley T, Palmer C & Winn M (2017) Recent developments in the CCP-EM
software suite. Acta Cryst. D73:469–477.
doi: 10.1107/S2059798317007859 [https://doi.org/10.1107/S2059798317007859]

Contributing

Please use the GitHub issue tracker [https://github.com/ccpem/mrcfile/issues] for bug reports and feature requests, or
email CCP-EM.

Code contributions are also welcome, please submit pull requests to the
GitHub repository [https://github.com/ccpem/mrcfile].

To run the test suite, go to the top-level project directory (which contains
the mrcfile and tests packages) and run python -m unittest tests.
(Or, if you have tox [http://tox.readthedocs.org] installed, run tox.)

Licence

The project is released under the BSD licence.

Usage Guide

This is a detailed guide to using the mrcfile Python library. For a brief
introduction, see the overview.

Opening MRC files

Normal file access

MRC files can be opened using the mrcfile.new() or
mrcfile.open() functions. These return an instance of the
MrcFile class, which represents an MRC file on disk
and makes the file’s header, extended header and data available for read and
write access as numpy arrays [https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html]. :

>>> # First, create a simple dataset
>>> import numpy as np
>>> example_data = np.arange(12, dtype=np.int8).reshape(3, 4)

>>> # Make a new MRC file and write the data to it:
>>> import mrcfile
>>> with mrcfile.new('tmp.mrc') as mrc:
... mrc.set_data(example_data)
...
>>> # The file is now saved on disk. Open it again and check the data:
>>> with mrcfile.open('tmp.mrc') as mrc:
... mrc.data
...
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]], dtype=int8)

Simple data access

Alternatively, for even quicker access to MRC data but with minimal control of
the file header, you can use the read() and
write() functions. These do not return
MrcFile objects but instead work directly with
numpy arrays [https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html]:

>>> # First, create a simple dataset
>>> import numpy as np
>>> example_data_2 = np.arange(6, dtype=np.int8).reshape(3, 2)

>>> # Write the data to a new MRC file:
>>> mrcfile.write('tmp2.mrc', example_data_2)

>>> # Read it back:
>>> mrcfile.read('tmp2.mrc')
array([[0, 1],
 [2, 3],
 [4, 5]], dtype=int8)

Handling compressed files

All of the functions shown above can also handle gzip- or bzip2-compressed
files very easily:

>>> # Make a new gzipped MRC file:
>>> with mrcfile.new('tmp.mrc.gz', compression='gzip') as mrc:
... mrc.set_data(example_data * 2)
...
>>> # Open it again with the normal open function:
>>> with mrcfile.open('tmp.mrc.gz') as mrc:
... mrc.data
...
array([[0, 2, 4, 6],
 [8, 10, 12, 14],
 [16, 18, 20, 22]], dtype=int8)

>>> # Same again for bzip2:
>>> with mrcfile.new('tmp.mrc.bz2', compression='bzip2') as mrc:
... mrc.set_data(example_data * 3)
...
>>> # Open it again with the normal read function:
>>> mrcfile.read('tmp.mrc.bz2')
array([[0, 3, 6, 9],
 [12, 15, 18, 21],
 [24, 27, 30, 33]], dtype=int8)

>>> # The write function applies compression automatically based on the file name
>>> mrcfile.write('tmp2.mrc.gz', example_data * 4)

>>> # The new file is opened as a GzipMrcFile object:
>>> with mrcfile.open('tmp2.mrc.gz') as mrc:
... print(mrc)
...
GzipMrcFile('tmp2.mrc.gz', mode='r')

Closing files and writing to disk

MrcFile objects should be closed when they are
finished with, to ensure any changes are flushed to disk and the underlying
file object is closed:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # do things...
>>> mrc.close()

As we saw in the examples above, MrcFile objects
support Python’s with [https://docs.python.org/3.8/reference/compound_stmts.html#with] statement, which will ensure the file is
closed properly after use (like a normal Python file object). It’s generally a
good idea to use with [https://docs.python.org/3.8/reference/compound_stmts.html#with] if possible, but sometimes when running Python
interactively (as in some of these examples), it’s more convenient to open a
file and keep using it without having to work in an indented block. If you do
this, remember to close the file at the end!

There’s also a flush() method that
writes the MRC data to disk but leaves the file open:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # do things...
>>> mrc.flush() # make sure changes are written to disk
>>> # continue using the file...
>>> mrc.close() # close the file when finished

MrcFile subclasses

For most purposes, the top-level functions in mrcfile should be all you
need to open MRC files, but it is also possible to directly instantiate
MrcFile and its subclasses,
GzipMrcFile,
Bzip2MrcFile and
MrcMemmap:

>>> with mrcfile.mrcfile.MrcFile('tmp.mrc') as mrc:
... mrc
...
MrcFile('tmp.mrc', mode='r')

>>> with mrcfile.gzipmrcfile.GzipMrcFile('tmp.mrc.gz') as mrc:
... mrc
...
GzipMrcFile('tmp.mrc.gz', mode='r')

>>> with mrcfile.bzip2mrcfile.Bzip2MrcFile('tmp.mrc.bz2') as mrc:
... mrc
...
Bzip2MrcFile('tmp.mrc.bz2', mode='r')

>>> with mrcfile.mrcmemmap.MrcMemmap('tmp.mrc') as mrc:
... mrc
...
MrcMemmap('tmp.mrc', mode='r')

File modes

MrcFile objects can be opened in three modes: r,
r+ and w+. These correspond to the standard Python file modes, so r
opens a file in read-only mode:

>>> # The default mode is 'r', for read-only access:
>>> mrc = mrcfile.open('tmp.mrc')
>>> mrc
MrcFile('tmp.mrc', mode='r')
>>> mrc.set_data(example_data)
Traceback (most recent call last):
 ...
ValueError: MRC object is read-only
>>> mrc.close()

r+ opens it for reading and writing:

>>> # Using mode 'r+' allows read and write access:
>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> mrc
MrcFile('tmp.mrc', mode='r+')
>>> mrc.set_data(example_data)
>>> mrc.data
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]], dtype=int8)
>>> mrc.close()

and w+ opens a new, empty file (also for both reading and writing):

>>> # Mode 'w+' creates a new empty file:
>>> mrc = mrcfile.open('empty.mrc', mode='w+')
>>> mrc
MrcFile('empty.mrc', mode='w+')
>>> mrc.data
array([], dtype=int8)
>>> mrc.close()

The new() function is effectively shorthand for
open(name, mode='w+'):

>>> # Make a new file
>>> mrc = mrcfile.new('empty.mrc')
Traceback (most recent call last):
 ...
ValueError: File 'empty.mrc' already exists; set overwrite=True to overwrite it
>>> # Ooops, we've already got a file with that name!
>>> # If we're sure we want to overwrite it, we can try again:
>>> mrc = mrcfile.new('empty.mrc', overwrite=True)
>>> mrc
MrcFile('empty.mrc', mode='w+')
>>> mrc.close()

Permissive read mode

Normally, if an MRC file is badly invalid, an exception is raised when the file
is opened. This can be a problem if we want to, say, open a file and fix a
header problem. To deal with this situation, open() and
mmap() provide an optional permissive argument. If this is
set to True [https://docs.python.org/3.8/library/constants.html#True], problems with the file will cause warnings to be issued
(using Python’s warnings [https://docs.python.org/3.8/library/warnings.html#module-warnings] module) instead of raising exceptions, and the
file will continue to be interpreted as far as possible.

Let’s see an example. First we’ll deliberately make an invalid file:

>>> # Make a new file and deliberately make a mistake in the header
>>> with mrcfile.new('invalid.mrc') as mrc:
... mrc.header.map = b'map ' # standard requires b'MAP '
...

Now when we try to open the file, an exception is raised:

>>> # Opening an invalid file raises an exception:
>>> mrc = mrcfile.open('invalid.mrc')
Traceback (most recent call last):
 ...
ValueError: Map ID string not found - not an MRC file, or file is corrupt

If we use permissive mode, we can open the file, and we’ll see a warning about
the problem (except that here, we have to catch the warning and print the
message manually, because warnings don’t play nicely with doctests!):

>>> # Opening in permissive mode succeeds, with a warning:
>>> with warnings.catch_warnings(record=True) as w:
... mrc = mrcfile.open('invalid.mrc', permissive=True)
... print(w[0].message)
...
Map ID string not found - not an MRC file, or file is corrupt

Now let’s fix the file:

>>> # Fix the invalid file by correcting the header
>>> with mrcfile.open('invalid.mrc', mode='r+', permissive=True) as mrc:
... mrc.header.map = mrcfile.constants.MAP_ID
...

And now we should be able to open the file again normally:

>>> # Now we don't need permissive mode to open the file any more:
>>> mrc = mrcfile.open('invalid.mrc')
>>> mrc.close()

The problems that can cause an exception when opening an MRC file are:

	The header’s map field is not set correctly to confirm the file type. If
the file is otherwise correct, permissive mode should be able to read the
file normally.

	The machine stamp is invalid and so the file’s byte order cannot be
determined. In this case, permissive mode assumes that the byte order is
little-endian and continues trying to read the file. If the file is actually
big-endian, the mode and data size checks will also fail because these
values depend on the endianness and will be nonsensical.

	The mode number is not recognised. Currently accepted modes are 0, 1, 2, 4, 6
and 12.

	The data block is not large enough for the specified data type and
dimensions.

In the last two cases, the data block will not be read and the
data attribute will be set to
None [https://docs.python.org/3.8/library/constants.html#None].

Fixing invalid files can be quite complicated! This usage guide might be
expanded in future to explain how to analyse and fix problems, or the library
itself might be improved to fix certain problems automatically. For now, if
you have trouble with an invalid file, inspecting the code in this library
might help you to work out how to approach the problem (start with
MrcInterpreter._read_header()), or you could try asking on the
CCP-EM mailing list [https://www.jiscmail.ac.uk/CCPEM] for advice.

A note on axis ordering

mrcfile follows the Python / C-style convention for axis
ordering. This means that the first index is the slowest axis (typically Z for
volume data or Y for images) and the last index is the fastest axis (typically
X), and the numpy arrays are C-contiguous:

>>> data = mrcfile.read('tmp.mrc')
>>> data
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]], dtype=int8)

>>> data[1, 0] # x = 0, y = 1
4
>>> data[2, 3] # x = 3, y = 2
11

>>> data.flags.c_contiguous
True
>>> data.flags.f_contiguous
False

Note that this axis order is the opposite of the FORTRAN-style convention that
is used by some other software in structural biology. This can cause confusing
errors!

Using MrcFile objects

Accessing the header and data

The header and data arrays can be accessed using the
header,
extended_header and
data attributes:

>>> mrc = mrcfile.open('tmp.mrc')
>>> mrc.header
rec.array((4, 3, 1, ...),
 dtype=[('nx', ...)])
>>> mrc.extended_header
array([],
 dtype='|V1')
>>> mrc.data
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]], dtype=int8)
>>> mrc.close()

These attributes are read-only and cannot be assigned to directly, but (unless
the file mode is r) the arrays can be modified in-place:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> # A new data array cannot be assigned directly to the data attribute
>>> mrc.data = np.ones_like(example_data)
Traceback (most recent call last):
 ...
AttributeError: can't set attribute
>>> # But the data can be modified by assigning to a slice or index
>>> mrc.data[0, 0] = 10
>>> mrc.data
array([[10, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]], dtype=int8)
>>> # All of the data values can be replaced this way, as long as the data
>>> # size, shape and type are not changed
>>> mrc.data[:] = np.ones_like(example_data)
>>> mrc.data
array([[1, 1, 1, 1],
 [1, 1, 1, 1],
 [1, 1, 1, 1]], dtype=int8)
>>> mrc.close()

To replace the data or extended header completely, call the
set_data() and
set_extended_header() methods:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> data_3d = np.linspace(-1000, 1000, 20, dtype=np.int16).reshape(2, 2, 5)
>>> mrc.set_data(data_3d)
>>> mrc.data
array([[[-1000, -894, -789, -684, -578],
 [-473, -368, -263, -157, -52]],
 [[52, 157, 263, 368, 473],
 [578, 684, 789, 894, 1000]]], dtype=int16)
>>> # Setting a new data array updates the header dimensions to match
>>> mrc.header.nx
array(5, dtype=int32)
>>> mrc.header.ny
array(2, dtype=int32)
>>> mrc.header.nz
array(2, dtype=int32)
>>> # We can also set the extended header in the same way
>>> string_array = np.fromstring(b'The extended header can hold any kind of numpy array', dtype='S52')
>>> mrc.set_extended_header(string_array)
>>> mrc.extended_header
array([b'The extended header can hold any kind of numpy array'],
 dtype='|S52')
>>> # Setting the extended header updates the header's nsymbt field to match
>>> mrc.header.nsymbt
array(52, dtype=int32)
>>> mrc.close()

Note that setting an extended header does not automatically set or change the
header’s exttyp field. You should set this yourself to identify the type
of extended header you are using.

For a quick overview of the contents of a file’s header, call
print_header():

>>> with mrcfile.open('tmp.mrc') as mrc:
... mrc.print_header()
...
nx : 5
ny : 2
nz : 2
mode : 1
nxstart ...

Indexing the extended header

The extended_header attribute will
return an array of the bytes in the extended header. However, some
extended headers are structured and consist of a sequence of metadata
blocks, where each block corresponds to a single image, or slice, in the
data array. The attribute
indexed_extended_header is intended
for more convenient access to the indexed sequence of metadata blocks,
for known extended header types. It will return an array with the
appropriate numpy dtype set (or None in the case of failure) for
an indexable extended header array, even if the extended header itself
contains trailing padding bytes.

Currently two extended header types (exttyp) are recognised as indexable:
'FEI1' and 'FEI2'. Other types may be added in future.

Voxel size

The voxel (or pixel) size in the file can be accessed using the
voxel_size attribute, which returns a
numpy record array [https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray] with three fields, x, y
and z, for the voxel size in each dimension:

>>> with mrcfile.open('tmp.mrc') as mrc:
... mrc.voxel_size
...
rec.array((0., 0., 0.),
 dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])

In a new file, the voxel size is zero by default. To set the voxel size, you
can assign to the voxel_size attribute,
using a single number (for an isotropic voxel size), a 3-tuple or a single-item
record array with x, y and z fields (which must be in that order):

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')

>>> # Set a new isotropic voxel size:
>>> mrc.voxel_size = 1.0
>>> mrc.voxel_size
rec.array((1., 1., 1.),
 dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])

>>> # Set an anisotropic voxel size using a tuple:
>>> mrc.voxel_size = (1.0, 2.0, 3.0)
>>> mrc.voxel_size
rec.array((1., 2., 3.),
 dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])

>>> # And set a different anisotropic voxel size using a record array:
>>> mrc.voxel_size = np.rec.array((4., 5., 6.), dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> mrc.voxel_size
rec.array((4., 5., 6.),
 dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> mrc.close()

The sizes are not stored directly in the MRC header, but are calculated when
required from the header’s cell and grid size fields. The voxel size can
therefore be changed by altering the cell size:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')

>>> # Check the current voxel size in X:
>>> mrc.voxel_size.x
array(4., dtype=float32)

>>> # And check the current cell dimensions:
>>> mrc.header.cella
rec.array((20., 10., 6.),
 dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])

>>> # Now change the cell's X length:
>>> mrc.header.cella.x = 10

>>> # And we see the voxel size has also changed:
>>> mrc.voxel_size.x
array(2., dtype=float32)

>>> mrc.close()

Equivalently, the cell size will be changed if a new voxel size is given:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')

>>> # Check the current cell dimensions:
>>> mrc.header.cella
rec.array((10., 10., 6.),
 dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])

>>> # Set a new voxel size:
>>> mrc.voxel_size = 1.0

>>> # And our cell size has been updated:
>>> mrc.header.cella
rec.array((5., 2., 1.),
 dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])

>>> mrc.close()

Because the voxel size array is calculated on demand, assigning back to it
wouldn’t work so it’s flagged as read-only:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')

>>> # This doesn't work
>>> mrc.voxel_size.x = 2.0
Traceback (most recent call last):
 ...
ValueError: assignment destination is read-only

>>> # But you can do this
>>> vsize = mrc.voxel_size.copy()
>>> vsize.x = 2.0
>>> mrc.voxel_size = vsize
>>> mrc.voxel_size
rec.array((2., 1., 1.),
 dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> mrc.close()

Note that the calculated voxel size will change if the grid size is changed by
replacing the data array:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')

>>> # Check the current voxel size:
>>> mrc.voxel_size
rec.array((2., 1., 1.),
 dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> # And the current data dimensions:
>>> mrc.data.shape
(2, 2, 5)

>>> # Replace the data with an array with a different shape:
>>> mrc.set_data(example_data)
>>> mrc.data.shape
(3, 4)

>>> # ...and the voxel size has changed:
>>> mrc.voxel_size
rec.array((2.5, 0.6666667, 1.),
 dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])

>>> mrc.close()

Keeping the header and data in sync

When a new data array is given (using
set_data() or the data argument to
mrcfile.new()), the header is automatically updated to ensure the file is
is valid:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')

>>> # Check the current data shape and header dimensions match
>>> mrc.data.shape
(3, 4)
>>> mrc.header.nx
array(4, dtype=int32)
>>> mrc.header.nx == mrc.data.shape[-1] # X axis is always the last in shape
True

>>> # Let's also check the maximum value recorded in the header
>>> mrc.header.dmax
array(11., dtype=float32)
>>> mrc.header.dmax == mrc.data.max()
True

>>> # Now set a data array with a different shape, and check the header again
>>> mrc.set_data(data_3d)
>>> mrc.data.shape
(2, 2, 5)
>>> mrc.header.nx
array(5, dtype=int32)
>>> mrc.header.nx == mrc.data.shape[-1]
True

>>> # The data statistics are updated as well
>>> mrc.header.dmax
array(1000., dtype=float32)
>>> mrc.header.dmax == mrc.data.max()
True
>>> mrc.close()

If the data array is modified in place, for example by editing values
or changing the shape or dtype attributes, the header will no longer be
correct:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> mrc.data.shape
(2, 2, 5)

>>> # Change the data shape in-place and check the header
>>> mrc.data.shape = (5, 4)
>>> mrc.header.nx == mrc.data.shape[-1]
False

>>> # We'll also change some values and check the data statistics
>>> mrc.data[2:] = 0
>>> mrc.data.max()
0
>>> mrc.header.dmax == mrc.data.max()
False
>>> mrc.close()

Note that the header is deliberately not updated automatically except when
set_data() is called, so if you need to
override any of the automatic header values you can do.

To keep the header in sync with the data, three methods can be used to update
the header:

	update_header_from_data(): This updates
the header’s dimension fields, mode, space group and machine stamp to be
consistent with the data array. Because it only inspects the data array’s
attributes, this method is fast even for very large arrays.

	update_header_stats(): This updates the
data statistics fields in the header (dmin, dmax, dmean and rms). This method
can be slow with large data arrays because it has to access the full contents
of the array.

	reset_header_stats(): If the data values
have changed and the statistics fields are invalid, but the data array is
very large and you do not want to wait for update_header_stats() to run,
you can call this method to reset the header’s statistics fields to indicate
that the values are undetermined.

The file we just saved had an invalid header, but of course, that’s what’s used
by mrcfile to work out how to read the file from disk! When we open the
file again, our change to the shape has disappeared:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')
>>> mrc.data.shape
(2, 2, 5)

>>> # Let's change the shape again, as we did before
>>> mrc.data.shape = (5, 4)
>>> mrc.header.nx == mrc.data.shape[-1]
False

>>> # Now let's update the dimensions:
>>> mrc.update_header_from_data()
>>> mrc.header.nx
array(4, dtype=int32)
>>> mrc.header.nx == mrc.data.shape[-1]
True

>>> # The data statistics are still incorrect:
>>> mrc.header.dmax
array(1000., dtype=float32)
>>> mrc.header.dmax == mrc.data.max()
False

>>> # So let's update those as well:
>>> mrc.update_header_stats()
>>> mrc.header.dmax
array(0., dtype=float32)
>>> mrc.header.dmax == mrc.data.max()
True
>>> mrc.close()

In general, if you’re changing the shape, type or endianness of the data, it’s
easiest to use set_data() and the header
will be kept up to date for you. If you start changing values in the data,
remember that the statistics in the header will be out of date until you call
update_header_stats() or
reset_header_stats().

Data dimensionality

MRC files can be used to store several types of data: single images, image
stacks, volumes and volume stacks. These are distinguished by the
dimensionality of the data array and the space group number (the header’s
ispg field):

	Data type

	Dimensions

	Space group

	Single image

	2

	0

	Image stack

	3

	0

	Volume

	3

	1–230 (1 for normal EM data)

	Volume stack

	4

	401–630 (401 for normal EM data)

MrcFile objects have methods to allow easy
identification of the data type:
is_single_image(),
is_image_stack(),
is_volume() and
is_volume_stack().

>>> mrc = mrcfile.open('tmp.mrc')

>>> # The file currently contains two-dimensional data
>>> mrc.data.shape
(5, 4)
>>> len(mrc.data.shape)
2

>>> # This is intepreted as a single image
>>> mrc.is_single_image()
True
>>> mrc.is_image_stack()
False
>>> mrc.is_volume()
False
>>> mrc.is_volume_stack()
False

>>> mrc.close()

If a file already contains image or image stack data, new three-dimensional
data is treated as an image stack; otherwise, 3D data is treated as a volume by
default:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')

>>> # New 3D data in an existing image file is treated as an image stack:
>>> mrc.set_data(data_3d)
>>> len(mrc.data.shape)
3
>>> mrc.is_volume()
False
>>> mrc.is_image_stack()
True
>>> int(mrc.header.ispg)
0
>>> mrc.close()

>>> # But normally, 3D data is treated as a volume:
>>> mrc = mrcfile.new('tmp.mrc', overwrite=True)
>>> mrc.set_data(data_3d)
>>> mrc.is_volume()
True
>>> mrc.is_image_stack()
False
>>> int(mrc.header.ispg)
1
>>> mrc.close()

Call set_image_stack() and
set_volume() to change the interpretation of
3D data. (Note: as well as changing ispg, these methods also change mz
to be 1 for image stacks and equal to nz for volumes.)

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')

>>> # Change the file to represent an image stack:
>>> mrc.set_image_stack()
>>> mrc.is_volume()
False
>>> mrc.is_image_stack()
True
>>> int(mrc.header.ispg)
0

>>> # And now change it back to representing a volume:
>>> mrc.set_volume()
>>> mrc.is_volume()
True
>>> mrc.is_image_stack()
False
>>> int(mrc.header.ispg)
1

>>> mrc.close()

Note that the MRC format [http://www.ccpem.ac.uk/mrc_format/mrc2014.php] allows the data axes to be swapped using the
header’s mapc, mapr and maps fields. This library does not attempt
to swap the axes and simply assigns the columns to X, rows to Y and sections to
Z. (The data array is indexed in C style, so data values can be accessed using
mrc.data[z][y][x].) In general, EM data is written using the default
axes, but crystallographic data files might use swapped axes in certain space
groups – if this might matter to you, you should check the mapc, mapr
and maps fields after opening the file and consider transposing the data
array if necessary.

Data types

Various numpy data types [https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html] can be used for MRC data arrays. The conversions to
MRC mode numbers are:

	Data type

	MRC mode

	float16

	12 (see note below)

	float32

	2

	int8

	0

	int16

	1

	uint8

	6 (note that data will be widened to 16 bits in the file)

	uint16

	6

	complex64

	4

(Mode 3 and the proposed 4-bit mode 101 are not supported since there are no
corresponding numpy dtypes.)

Note that mode 12 is a proposed extension to the MRC2014 format and is not yet
widely supported by other software. If you need to write float16 data to MRC
files in a compatible way, you should cast to float32 first and use mode 2.

No other data types are accepted, including integer types of more than 16 bits,
or float types of more than 32 bits. Many numpy array creation routines use
int64 or float64 dtypes by default, which means you will need to give a
dtype argument to ensure the array can be used in an MRC file:

>>> mrc = mrcfile.open('tmp.mrc', mode='r+')

>>> # This does not work
>>> mrc.set_data(np.zeros((4, 5)))
Traceback (most recent call last):
 ...
ValueError: dtype 'float64' cannot be converted to an MRC file mode
>>> # But this does
>>> mrc.set_data(np.zeros((4, 5), dtype=np.int16))
>>> mrc.data
array([[0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0]], dtype=int16)

>>> mrc.close()

Warning: be careful if you have an existing numpy array in float64, int64 or
int32 data types. If they try to convert them into one of the narrower types
supported by mrcfile and they contain values outside the range of the
target type, the values will silently overflow. For floating point formats
this can lead to inf values, and with integers it can lead to entirely
meaningless values. A full discussion of this issue is outside the scope of
this guide; see the numpy documentation for more information.

Dealing with large files

mrcfile provides two ways of improving performance when handling large
files: memory mapping and asynchronous (background) opening. Memory mapping [https://en.wikipedia.org/wiki/Memory-mapped_file]
treats the file’s data on disk as if it is already in memory, and only actually
loads the data in small chunks when it is needed. Asynchronous opening [https://en.wikipedia.org/wiki/Asynchronous_I/O] uses
a separate thread to open the file, allowing the main thread to carry on with
other work while the file is loaded from disk in parallel.

Which technique is better depends on what you intend to do with the file and
the characteristics of your computer, and it’s usually worth testing both
approaches and seeing what works best for your particular task. In general,
memory mapping gives better performance when dealing with a single file,
particularly if the file is very large. If you need to process several files,
asynchronous opening can be faster because you can work on one file while
loading the next one.

Memory-mapped files

With very large files, it might be helpful to use the mrcfile.mmap()
function to open the file, which will open the data as a
memory-mapped numpy array [https://numpy.org/doc/stable/reference/generated/numpy.memmap.html#numpy.memmap]. The contents of the array
are only read from disk as needed, so this allows large files to be opened very
quickly. Parts of the data can then be read and written by slicing the array:

>>> # Let's make a new file to work with (only small for this example!)
>>> mrcfile.write('maybe_large.mrc', example_data)

>>> # Open the file in memory-mapped mode
>>> mrc = mrcfile.mmap('maybe_large.mrc', mode='r+')
>>> # Now read part of the data by slicing
>>> mrc.data[1:3]
memmap([[4, 5, 6, 7],
 [8, 9, 10, 11]], dtype=int8)

>>> # Set some values by assigning to a slice
>>> mrc.data[1:3,1:3] = 0

>>> # Read the entire array - with large files this might take a while!
>>> mrc.data[:]
memmap([[0, 1, 2, 3],
 [4, 0, 0, 7],
 [8, 0, 0, 11]], dtype=int8)
>>> mrc.close()

To create new large, empty files quickly, use the mrcfile.new_mmap()
function. This creates an empty file with a given shape and data mode. An
optional fill value can be provided but filling a very large mmap array can
take a long time, so it’s best to use this only when needed. If you plan to
fill the array with other data anyway, it’s better to leave the fill value as
None [https://docs.python.org/3.8/library/constants.html#None]. A typical use case would be to create a new file and then fill
it slice by slice:

>>> # Make a new, empty memory-mapped MRC file
>>> mrc = mrcfile.new_mmap('mmap.mrc', shape=(3, 3, 4), mrc_mode=0)
>>> # Fill each slice with a different value
>>> for val in range(len(mrc.data)):
... mrc.data[val] = val
...
>>> mrc.data[:]
memmap([[[0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0]],

 [[1, 1, 1, 1],
 [1, 1, 1, 1],
 [1, 1, 1, 1]],

 [[2, 2, 2, 2],
 [2, 2, 2, 2],
 [2, 2, 2, 2]]], dtype=int8)

Asynchronous opening

When processing several files in a row, asynchronous (background) opening can
improve performance by allowing you to open multiple files in parallel. The
mrcfile.open_async() function starts a background thread to open a file,
and returns a FutureMrcFile object which you
can call later to get the file after it’s been opened:

>>> # Open the first example file
>>> mrc1 = mrcfile.open('maybe_large.mrc')
>>> # Start opening the second example file before we process the first
>>> future_mrc2 = mrcfile.open_async('tmp.mrc.gz')
>>> # Now we'll do some calculations with the first file
>>> mrc1.data.sum()
36
>>> # Get the second file from its "Future" container ('result()' will wait
>>> # until the file is ready)
>>> mrc2 = future_mrc2.result()
>>> # Before we process the second file, we'll start the third one opening
>>> future_mrc3 = mrcfile.open_async('tmp.mrc.bz2')
>>> mrc2.data.max()
22
>>> # Finally, we'll get the third file and process it
>>> mrc3 = future_mrc3.result()
>>> mrc3.data
array([[0, 3, 6, 9],
 [12, 15, 18, 21],
 [24, 27, 30, 33]], dtype=int8)

As we saw in that example, calling
result() will give us the
MrcFile from the file opening operation. If the file
hasn’t been fully opened yet,
result() will simply wait until
it’s ready. To avoid waiting, call
done() to check if it’s finished.

Validating MRC files

MRC files can be validated with mrcfile.validate(), which prints an
explanation of what is happening and also returns True [https://docs.python.org/3.8/library/constants.html#True] if the file is
valid or False [https://docs.python.org/3.8/library/constants.html#False] otherwise:

>>> mrcfile.validate('tmp.mrc')
Checking if tmp.mrc is a valid MRC2014 file...
File appears to be valid.
True

This works equally well for gzip- or bzip2-compressed files:

>>> mrcfile.validate('tmp.mrc.gz')
Checking if tmp.mrc.gz is a valid MRC2014 file...
File appears to be valid.
True

>>> mrcfile.validate('tmp.mrc.bz2')
Checking if tmp.mrc.bz2 is a valid MRC2014 file...
File appears to be valid.
True

Errors will cause messages to be printed to the console, and
validate() will return False:

>>> # Let's make a file which is valid except for the header's mz value
>>> with mrcfile.new('tmp.mrc', overwrite=True) as mrc:
... mrc.set_data(example_data)
... mrc.header.mz = -1
...

>>> # Now it should fail validation and print a helpful message
>>> mrcfile.validate('tmp.mrc')
Checking if tmp.mrc is a valid MRC2014 file...
Header field 'mz' is negative
False

(More serious errors might also cause warnings to be printed to
sys.stderr [https://docs.python.org/3.8/library/sys.html#sys.stderr].)

Normally, messages are printed to sys.stdout [https://docs.python.org/3.8/library/sys.html#sys.stdout] (as normal for Python
print() [https://docs.python.org/3.8/library/functions.html#print] calls). validate() has an optional print_file
argument which allows any text stream to be used for the output instead:

>>> # Create a text stream to capture the output
>>> import io
>>> output = io.StringIO()

>>> # Now validate the file...
>>> mrcfile.validate('tmp.mrc', print_file=output)
False

>>> # ...and check the output separately
>>> print(output.getvalue().strip())
Checking if tmp.mrc is a valid MRC2014 file...
Header field 'mz' is negative

Behind the scenes, mrcfile.validate() opens the file in permissive mode
using mrcfile.open() and then calls
MrcFile.validate(). If you already
have an MrcFile open, you can call its
validate() method directly
to check the file – but note that the file size test might be inaccurate
unless you call flush() first. To
ensure the file is completely valid, it’s best to flush or close the file and
then validate it from scratch using mrcfile.validate().

If you find that a file created with this library is invalid, and you haven’t
altered anything in the header in a way that might cause problems, please file
a bug report on the issue tracker [https://github.com/ccpem/mrcfile/issues]!

Command line usage

Some mrcfile functionality is available directly from the command line,
via scripts that are installed along with the package, or in some cases by
running modules with python -m.

(If you’ve downloaded the source code instead of installing via pip, run
pip install <path-to-mrcfile> or python setup.py install to make the
command line scripts available.)

Validation

MRC files can be validated with the mrcfile-validate script:

$ mrcfile-validate tests/test_data/EMD-3197.map
Checking if tests/test_data/EMD-3197.map is a valid MRC2014 file...
File does not declare MRC format version 20140 or 20141: nversion = 0

$ # Exit status is 1 if file is invalid
$ echo $?
1

This script wraps the mrcfile.validator module, which can also be called
directly:

$ python -m mrcfile.validator valid_file.mrc
Checking if valid_file.mrc is a valid MRC2014 file...
File appears to be valid.
$ echo $?
0

Multiple file names can be passed to either form of the command, and because
these commands call mrcfile.validate() behind the scenes, gzip- and
bzip2-compressed files can be validated as well:

$ mrcfile-validate valid_file_1.mrc valid_file_2.mrc.gz valid_file_3.mrc.bz2
Checking if valid_file_1.mrc is a valid MRC2014 file...
File appears to be valid.
Checking if valid_file_2.mrc is a valid MRC2014 file...
File appears to be valid.
Checking if valid_file_3.mrc is a valid MRC2014 file...
File appears to be valid.

Examining MRC headers

MRC file headers can be printed to the console with the mrcfile-header
script:

$ mrcfile-header tests/test_data/EMD-3197.map
MRC header for tests/test_data/EMD-3197.map:
nx : 20
ny : 20
nz : 20
mode : 2
nxstart : -2
nystart : 0
nzstart : 0
mx : 20
my : 20
mz : 20
cella : (228.0, 228.0, 228.0)
cellb : (90.0, 90.0, 90.0)
...
...

Like mrcfile-validate, this also works for multiple files. If you want to
access the same functionality from within Python, call
print_header() on an open
MrcFile object, or
mrcfile.command_line.print_headers() with a list of file names.

API overview

Class hierarchy

The following classes are provided by the mrcfile.py library:

	MrcObject: Represents a generic MRC-like data
object in memory, and provides header, extended header and data arrays and
methods for operating on them.

	MrcInterpreter: Subclass of MrcObject that
can read and/or write its MRC data from arbitrary byte I/O streams
(including Python file objects).

	MrcFile: Subclass of MrcInterpreter that opens a
file from disk to use as its I/O stream. This is the normal class used for
most interactions with MRC files.

	GzipMrcFile: Reads and writes MRC data using
compressed gzip files.

	Bzip2MrcFile: Reads and writes MRC data using
compressed bzip2 files.

	MrcMemmap: Uses a memory-mapped data array, for
fast random access to very large data files. MrcMemmap overrides various
parts of the MrcFile implementation to ensure that the memory-mapped data
array is opened, closed and moved correctly when the data or extended header
array sizes are changed.

MrcFile attributes and methods

Attributes:

	header

	extended_header

	indexed_extended_header

	data

	voxel_size

Methods:

	set_extended_header()

	set_data()

	is_single_image()

	is_image_stack()

	is_volume()

	is_volume_stack()

	set_image_stack()

	set_volume()

	update_header_from_data()

	update_header_stats()

	reset_header_stats()

	print_header()

	validate()

	flush()

	close()

Source documentation

mrcfile – Main package

mrcfile

A pure Python implementation of the MRC2014 file format.

For a full introduction and documentation, see http://mrcfile.readthedocs.io/

Functions

	new(): Create a new MRC file.

	open(): Open an MRC file.

	open_async(): Open an MRC file asynchronously.

	mmap(): Open a memory-mapped MRC file (fast for large files).

	new_mmap(): Create a new empty memory-mapped MRC file (fast for large files).

	validate(): Validate an MRC file

Basic usage

Examples assume that this package has been imported as mrcfile and numpy
has been imported as np.

To open an MRC file and read a slice of data:

>>> with mrcfile.open('tests/test_data/EMD-3197.map') as mrc:
... mrc.data[10,10]
...
array([2.58179283, 3.1406002 , 3.64495397, 3.63812137, 3.61837363,
 4.0115056 , 3.66981959, 2.07317996, 0.1251585 , -0.87975615,
 0.12517013, 2.07319379, 3.66982722, 4.0115037 , 3.61837196,
 3.6381247 , 3.64495087, 3.14059472, 2.58178973, 1.92690361], dtype=float32)

To create a new file with a 2D data array, and change some values:

>>> with mrcfile.new('tmp.mrc') as mrc:
... mrc.set_data(np.zeros((5, 5), dtype=np.int8))
... mrc.data[1:4,1:4] = 10
... mrc.data
...
array([[0, 0, 0, 0, 0],
 [0, 10, 10, 10, 0],
 [0, 10, 10, 10, 0],
 [0, 10, 10, 10, 0],
 [0, 0, 0, 0, 0]], dtype=int8)

Background

The MRC2014 format was described in the Journal of Structural Biology:
http://dx.doi.org/10.1016/j.jsb.2015.04.002

The format specification is available on the CCP-EM website:
http://www.ccpem.ac.uk/mrc_format/mrc2014.php

Members

	
mrcfile.new(name, data=None, compression=None, overwrite=False)

	Create a new MRC file.

	Parameters

	
	name – The file name to use, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path].

	data – Data to put in the file, as a numpy array [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]. The default is None [https://docs.python.org/3.8/library/constants.html#None], to create an empty
file.

	compression – The compression format to use. Acceptable values are:
None [https://docs.python.org/3.8/library/constants.html#None] (the default; for no compression), 'gzip' or
'bzip2'.
It’s good practice to name compressed files with an appropriate
extension (for example, .mrc.gz for gzip) but this is not
enforced.

	overwrite – Flag to force overwriting of an existing file. If
False [https://docs.python.org/3.8/library/constants.html#False] and a file of the same name already exists, the file
is not overwritten and an exception is raised.

	Returns

	An MrcFile object (or a
subclass of it if compression is specified).

	Raises

	
	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the file already exists and overwrite is
 False [https://docs.python.org/3.8/library/constants.html#False].

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the compression format is not recognised.

	Warns

	RuntimeWarning – If the data array contains Inf or NaN values.

	
mrcfile.open(name, mode='r', permissive=False, header_only=False)

	Open an MRC file.

This function opens both normal and compressed MRC files. Supported
compression formats are: gzip, bzip2.

It is possible to use this function to create new MRC files (using mode
w+) but the new() function is more flexible.

This function offers a permissive read mode for attempting to open corrupt
or invalid files. In permissive mode, warnings [https://docs.python.org/3.8/library/warnings.html#module-warnings] are issued instead of
exceptions if problems with the file are encountered. See
MrcInterpreter or the
usage guide for more information.

	Parameters

	
	name – The file name to open, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path].

	mode – The file mode to use. This should be one of the following: r
for read-only, r+ for read and write, or w+ for a new empty
file. The default is r.

	permissive – Read the file in permissive mode. The default is
False [https://docs.python.org/3.8/library/constants.html#False].

	header_only – Only read the header (and extended header) from the file.
The default is False [https://docs.python.org/3.8/library/constants.html#False].

	Returns

	An MrcFile object (or a
GzipMrcFile object if the file is
gzipped).

	Raises

	
	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the mode is not one of r, r+ or w+.

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the file is not a valid MRC file and
 permissive is False [https://docs.python.org/3.8/library/constants.html#False].

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the mode is w+ and the file already exists.
 (Call new() with overwrite=True to deliberately overwrite
 an existing file.)

	OSError [https://docs.python.org/3.8/library/exceptions.html#OSError] – If the mode is r or r+ and the file does not
 exist.

	Warns

	
	RuntimeWarning – If the file appears to be a valid MRC file but the data
block is longer than expected from the dimensions in the header.

	RuntimeWarning – If the file is not a valid MRC file and permissive
is True [https://docs.python.org/3.8/library/constants.html#True].

	RuntimeWarning – If the header’s exttyp field is set to a known
value but the extended header’s size is not a multiple of the
number of bytes in the corresponding dtype.

	
mrcfile.read(name)

	Read an MRC file’s data into a numpy array.

This is a convenience function to read the data from an MRC file when there is no
need for the file’s header information. To read the headers as well, or if you need
access to an MrcFile object representing the file, use
mrcfile.open() instead.

	Parameters

	name – The file name to read, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path].

	Returns

	A numpy array [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] containing the data from the file.

	
mrcfile.write(name, data=None, overwrite=False, voxel_size=None)

	Write a new MRC file.

This is a convenience function to allow data to be quickly written to a file (with
optional compression) using just a single function call. However, there is no
control over the file’s metadata except for optionally setting the voxel size. For
more control, or if you need access to an MrcFile object
representing the new file, use mrcfile.new() instead.

	Parameters

	
	name – The file name to use, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path]. If the name
ends with .gz or .bz2, the file will be compressed using gzip or
bzip2 respectively.

	data – Data to put in the file, as a numpy array [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]. The default is None [https://docs.python.org/3.8/library/constants.html#None], to create an empty
file.

	overwrite – Flag to force overwriting of an existing file. If
False [https://docs.python.org/3.8/library/constants.html#False] and a file of the same name already exists, the file
is not overwritten and an exception is raised.

	voxel_size – float | 3-tuple
The voxel size to be written in the file header.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the file already exists and overwrite is
 False [https://docs.python.org/3.8/library/constants.html#False].

	Warns

	RuntimeWarning – If the data array contains Inf or NaN values.

	
mrcfile.open_async(name, mode='r', permissive=False)

	Open an MRC file asynchronously in a separate thread.

This allows a file to be opened in the background while the main thread
continues with other work. This can be a good way to improve performance if
the main thread is busy with intensive computation, but will be less
effective if the main thread is itself busy with disk I/O.

Multiple files can be opened in the background simultaneously. However,
this implementation is relatively crude; each call to this function will
start a new thread and immediately use it to start opening a file. If you
try to open many large files at the same time, performance will decrease as
all of the threads attempt to access the disk at once. You’ll also risk
running out of memory to store the data from all the files.

This function returns a FutureMrcFile
object, which deliberately mimics the API of the
Future [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future] object from Python 3’s
concurrent.futures [https://docs.python.org/3.8/library/concurrent.futures.html#module-concurrent.futures] module. (Future versions of this library might
return genuine Future [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future] objects instead.)

To get the real MrcFile object from a
FutureMrcFile, call
result(). This will block until
the file has been read and the MrcFile object is
ready. To check if the MrcFile is ready without
blocking, call running() or
done().

	Parameters

	
	name – The file name to open, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path].

	mode – The file mode (one of r, r+ or w+).

	permissive – Read the file in permissive mode. The default is
False [https://docs.python.org/3.8/library/constants.html#False].

	Returns

	A FutureMrcFile object.

	
mrcfile.mmap(name, mode='r', permissive=False)

	Open a memory-mapped MRC file.

This allows much faster opening of large files, because the data is only
accessed on disk when a slice is read or written from the data array. See
the MrcMemmap class documentation for more
information.

Because the memory-mapped data array accesses the disk directly, compressed
files cannot be opened with this function. In all other ways, mmap()
behaves in exactly the same way as open(). The
MrcMemmap object returned by this function can
be used in exactly the same way as a normal
MrcFile object.

	Parameters

	
	name – The file name to open, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path].

	mode – The file mode (one of r, r+ or w+).

	permissive – Read the file in permissive mode. The default is
False [https://docs.python.org/3.8/library/constants.html#False].

	Returns

	An MrcMemmap object.

	
mrcfile.new_mmap(name, shape, mrc_mode=0, fill=None, overwrite=False, extended_header=None, exttyp=None)

	Create a new, empty memory-mapped MRC file.

This function is useful for creating very large files. The initial contents
of the data array can be set with the fill parameter if needed, but be
aware that filling a large array can take a long time.

If fill is not set, the new data array’s contents are unspecified and
system-dependent. (Some systems fill a new empty mmap with zeros, others
fill it with the bytes from the disk at the newly-mapped location.) If you
are definitely going to fill the entire array with new data anyway you can
safely leave fill as None [https://docs.python.org/3.8/library/constants.html#None], otherwise it is advised to use a
sensible fill value (or ensure you are on a system that fills new mmaps
with a reasonable default value).

	Parameters

	
	name – The file name to use, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path].

	shape – The shape of the data array to open, as a 2-, 3- or 4-tuple of
ints. For example, (nz, ny, nx) for a new 3D volume, or
(ny, nx) for a new 2D image.

	mrc_mode – The MRC mode to use for the new file. One of 0, 1, 2, 4 or 6,
which correspond to numpy dtypes as follows:

	mode 0 -> int8

	mode 1 -> int16

	mode 2 -> float32

	mode 4 -> complex64

	mode 6 -> uint16

The default is 0.

	fill – An optional value to use to fill the new data array. If
None [https://docs.python.org/3.8/library/constants.html#None], the data array will not be filled and its contents
are unspecified. Numpy’s usual rules for rounding or rejecting
values apply, according to the dtype of the array.

	overwrite – Flag to force overwriting of an existing file. If
False [https://docs.python.org/3.8/library/constants.html#False] and a file of the same name already exists, the file
is not overwritten and an exception is raised.

	extended_header – The extended header object

	exttyp – The extended header type

	Returns

	A new MrcMemmap object.

	Raises

	
	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the MRC mode is invalid.

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the file already exists and overwrite is
 False [https://docs.python.org/3.8/library/constants.html#False].

	
mrcfile.validate(name, print_file=None)

	Validate an MRC file.

This function first opens the file by calling open() (with
permissive=True), then calls validate(),
which runs a series of tests to check whether the file complies with the
MRC2014 format specification.

If the file is completely valid, this function returns True [https://docs.python.org/3.8/library/constants.html#True],
otherwise it returns False [https://docs.python.org/3.8/library/constants.html#False]. Messages explaining the validation
result will be printed to sys.stdout [https://docs.python.org/3.8/library/sys.html#sys.stdout] by default, but if a text
stream is given (using the print_file argument) output will be printed
to that instead.

Badly invalid files will also cause warning [https://docs.python.org/3.8/library/warnings.html#module-warnings] messages to
be issued, which will be written to sys.stderr [https://docs.python.org/3.8/library/sys.html#sys.stderr] by default. See the
documentation of the warnings [https://docs.python.org/3.8/library/warnings.html#module-warnings] module for information on how to
suppress or capture warning output.

Because the file is opened by calling open(), gzip- and
bzip2-compressed MRC files can be validated easily using this function.

After the file has been opened, it is checked for problems. The tests are:

	MRC format ID string: The map field in the header should contain
“MAP “.

	Machine stamp: The machine stamp should contain one of
0x44 0x44 0x00 0x00, 0x44 0x41 0x00 0x00 or
0x11 0x11 0x00 0x00.

	MRC mode: the mode field should be one of the supported mode
numbers: 0, 1, 2, 4, 6 or 12. (Note that MRC modes 3 and 101 are also
valid according to the MRC 2014 specification but are not supported by
mrcfile.)

	Map and cell dimensions: The header fields nx, ny, nz,
mx, my, mz, cella.x, cella.y and cella.z must
all be positive numbers.

	Axis mapping: Header fields mapc, mapr and maps must contain
the values 1, 2, and 3 (in any order).

	Volume stack dimensions: If the spacegroup is in the range 401–630,
representing a volume stack, the nz field should be exactly
divisible by mz to represent the number of volumes in the stack.

	Header labels: The nlabl field should be set to indicate the number
of labels in use, and the labels in use should appear first in the label
array.

	MRC format version: The nversion field should be 20140 or 20141 for
compliance with the MRC2014 standard.

	Extended header type: If an extended header is present, the exttyp
field should be set to indicate the type of extended header.

	Data statistics: The statistics in the header should be correct for the
actual data in the file, or marked as undetermined.

	File size: The size of the file on disk should match the expected size
calculated from the MRC header.

	Parameters

	
	name – The file name to open and validate.

	print_file – The output text stream to use for printing messages about
the validation. This is passed directly to the file argument of
Python’s print() [https://docs.python.org/3.8/library/functions.html#print] function. The default is None [https://docs.python.org/3.8/library/constants.html#None], which
means output will be printed to sys.stdout [https://docs.python.org/3.8/library/sys.html#sys.stdout].

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if the file is valid, or False [https://docs.python.org/3.8/library/constants.html#False] if the file does
not meet the MRC format specification in any way.

	Raises

	OSError [https://docs.python.org/3.8/library/exceptions.html#OSError] – If the file does not exist or cannot be opened.

	Warns

	RuntimeWarning – If the file is seriously invalid because it has no map
ID string, an incorrect machine stamp, an unknown mode number, or
is not the same size as expected from the header.

Submodules

mrcfile.bzip2mrcfile module

bzip2mrcfile

Module which exports the Bzip2MrcFile class.

	Classes:
	Bzip2MrcFile: An object which represents a bzip2-compressed MRC
file.

	
class mrcfile.bzip2mrcfile.Bzip2MrcFile(name, mode='r', overwrite=False, permissive=False, header_only=False, **kwargs)

	Bases: MrcFile

MrcFile subclass for handling bzip2-compressed
files.

Usage is the same as for MrcFile.

	
_open_file(name)

	Override _open_file() to open a bzip2 file.

	
_read(header_only=False)

	Override _read() to ensure bzip2 file is in read mode.

	
_ensure_readable_bzip2_stream()

	Make sure _iostream is a bzip2 stream that can be read.

	
_get_file_size()

	Override _get_file_size() to ensure stream is readable first.

	
_read_bytearray_from_stream(number_of_bytes)

	Override because BZ2File in Python 2 does not support
readinto() [https://docs.python.org/3.8/library/io.html#io.BufferedIOBase.readinto].

	
flush()

	Override flush() since
BZ2File objects need special handling.

mrcfile.command_line module

command_line

Module for functions used as command line entry points.

The names of the corresponding command line scripts can be found in the
entry_points section of setup.py.

	
mrcfile.command_line.print_headers(names=None, print_file=None)

	Print the MRC header contents from a list of files.

This function opens files in permissive mode to allow headers of invalid
files to be examined.

	Parameters

	
	names – A list of file names. If not given or None [https://docs.python.org/3.8/library/constants.html#None], the names
are taken from the command line arguments.

	print_file – The output text stream to use for printing the headers.
This is passed directly to the print_file argument of
print_header(). The default is
None [https://docs.python.org/3.8/library/constants.html#None], which means output will be printed to
sys.stdout [https://docs.python.org/3.8/library/sys.html#sys.stdout].

mrcfile.constants module

constants

Constants used by the mrcfile.py library.

mrcfile.dtypes module

dtypes

numpy dtypes used by the mrcfile.py library.

The dtypes are defined in a separate module because they do not interact nicely
with the from __future__ import unicode_literals feature used in the rest
of the package.

	
mrcfile.dtypes.get_ext_header_dtype(exttyp, byte_order='=')

	Get a dtype for an extended header.

	Parameters

	
	exttyp – One of b'FEI1' or b'FEI2', which are currently the only
supported extended header types.

	byte_order – One of =, < or >.

	Returns

	A numpy dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] object for the extended header, or
None [https://docs.python.org/3.8/library/constants.html#None]

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If byte_order is not one of =, < or >.

mrcfile.future_mrcfile module

future_mrcfile

Module which exports the FutureMrcFile class.

	Classes:
	
	FutureMrcFile: An object which represents an MRC file being
	opened asynchronously.

	
class mrcfile.future_mrcfile.FutureMrcFile(open_function, args=(), kwargs={})

	Bases: object [https://docs.python.org/3.8/library/functions.html#object]

Object representing an MRC file being opened asynchronously.

This API deliberately mimics a Future [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future] object
from the concurrent.futures [https://docs.python.org/3.8/library/concurrent.futures.html#module-concurrent.futures] module in Python 3.2+ (which we do
not use directly because this code still needs to run in Python 2.7).

	
__init__(open_function, args=(), kwargs={})

	Initialise a new FutureMrcFile object.

This constructor starts a new thread which will invoke the callable
given in open_function with the given arguments.

	Parameters

	
	open_function – The callable to use to open the MRC file. (This will
normally be mrcfile.open(), but could also be
MrcFile or any of its subclasses.)

	args – A tuple of positional arguments to use when open_function
is called. (Normally a 1-tuple containing the name of the file
to open.)

	kwargs – A dictionary of keyword arguments to use when
open_function is called.

	
_run(*args, **kwargs)

	Call the open function and store the result in the holder list.

(For internal use only.)

	
cancel()

	Return False [https://docs.python.org/3.8/library/constants.html#False].

(See concurrent.futures.Future.cancel() [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future.cancel] for more details. This
implementation does not allow jobs to be cancelled.)

	
cancelled()

	Return False [https://docs.python.org/3.8/library/constants.html#False].

(See concurrent.futures.Future.cancelled() [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future.cancelled] for more details.
This implementation does not allow jobs to be cancelled.)

	
running()

	Return True [https://docs.python.org/3.8/library/constants.html#True] if the MrcFile is
currently being opened.

(See concurrent.futures.Future.running() [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future.running] for more details.)

	
done()

	Return True [https://docs.python.org/3.8/library/constants.html#True] if the file opening has finished.

(See concurrent.futures.Future.done() [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future.done] for more details.)

	
result(timeout=None)

	Return the MrcFile that has been opened.

(See concurrent.futures.Future.result() [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future.result] for more details.)

	Parameters

	timeout – Time to wait (in seconds) for the file opening to finish.
If timeout is not specified or is None [https://docs.python.org/3.8/library/constants.html#None], there is no
limit to the wait time.

	Returns

	An MrcFile object (or one of its
subclasses).

	Raises

	
	RuntimeError [https://docs.python.org/3.8/library/exceptions.html#RuntimeError] – If the operation has not finished within the
 time limit set by timeout. (Note that the type of this
 exception will change in future if this class is replaced by
 concurrent.futures.Future [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future].)

	Exception [https://docs.python.org/3.8/library/exceptions.html#Exception] – Any exception raised by the
 MrcFile opening operation will be
 re-raised here.

	
exception(timeout=None)

	Return the exception raised by the file opening operation.

(See concurrent.futures.Future.exception() [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future.exception] for more details.)

	Parameters

	timeout – Time to wait (in seconds) for the operation to finish. If
timeout is not specified or is None [https://docs.python.org/3.8/library/constants.html#None], there is no
limit to the wait time.

	Returns

	An Exception [https://docs.python.org/3.8/library/exceptions.html#Exception], if one was raised by the file opening
operation, or None [https://docs.python.org/3.8/library/constants.html#None] if no exception was raised.

	Raises

	RuntimeError [https://docs.python.org/3.8/library/exceptions.html#RuntimeError] – If the operation has not finished within the
 time limit set by timeout. (Note that the type of this
 exception will change in future if this class is replaced by
 concurrent.futures.Future [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future].)

	
_get_result(timeout)

	Return the result or exception from the file opening operation.

(For internal use only.)

	
add_done_callback(fn)

	Not implemented.

(See concurrent.futures.Future.add_done_callback() [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future.add_done_callback] for more details.)

mrcfile.gzipmrcfile module

gzipmrcfile

Module which exports the GzipMrcFile class.

	Classes:
	GzipMrcFile: An object which represents a gzipped MRC file.

	
class mrcfile.gzipmrcfile.GzipMrcFile(name, mode='r', overwrite=False, permissive=False, header_only=False, **kwargs)

	Bases: MrcFile

MrcFile subclass for handling gzipped files.

Usage is the same as for MrcFile.

	
_open_file(name)

	Override _open_file() to open both normal and gzip files.

	
_close_file()

	Override _close_file() to close both normal and gzip files.

	
_read(header_only=False)

	Override _read() to ensure gzip file is in read mode.

	
_ensure_readable_gzip_stream()

	Make sure _iostream is a gzip stream that can be read.

	
_get_file_size()

	Override _get_file_size() to avoid seeking from end.

	
flush()

	Override flush() since
GzipFile objects need special handling.

mrcfile.load_functions module

load_functions

Module for top-level functions that open MRC files and form the main API of
the package.

	
mrcfile.load_functions.new(name, data=None, compression=None, overwrite=False)

	Create a new MRC file.

	Parameters

	
	name – The file name to use, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path].

	data – Data to put in the file, as a numpy array [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]. The default is None [https://docs.python.org/3.8/library/constants.html#None], to create an empty
file.

	compression – The compression format to use. Acceptable values are:
None [https://docs.python.org/3.8/library/constants.html#None] (the default; for no compression), 'gzip' or
'bzip2'.
It’s good practice to name compressed files with an appropriate
extension (for example, .mrc.gz for gzip) but this is not
enforced.

	overwrite – Flag to force overwriting of an existing file. If
False [https://docs.python.org/3.8/library/constants.html#False] and a file of the same name already exists, the file
is not overwritten and an exception is raised.

	Returns

	An MrcFile object (or a
subclass of it if compression is specified).

	Raises

	
	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the file already exists and overwrite is
 False [https://docs.python.org/3.8/library/constants.html#False].

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the compression format is not recognised.

	Warns

	RuntimeWarning – If the data array contains Inf or NaN values.

	
mrcfile.load_functions.open(name, mode='r', permissive=False, header_only=False)

	Open an MRC file.

This function opens both normal and compressed MRC files. Supported
compression formats are: gzip, bzip2.

It is possible to use this function to create new MRC files (using mode
w+) but the new() function is more flexible.

This function offers a permissive read mode for attempting to open corrupt
or invalid files. In permissive mode, warnings [https://docs.python.org/3.8/library/warnings.html#module-warnings] are issued instead of
exceptions if problems with the file are encountered. See
MrcInterpreter or the
usage guide for more information.

	Parameters

	
	name – The file name to open, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path].

	mode – The file mode to use. This should be one of the following: r
for read-only, r+ for read and write, or w+ for a new empty
file. The default is r.

	permissive – Read the file in permissive mode. The default is
False [https://docs.python.org/3.8/library/constants.html#False].

	header_only – Only read the header (and extended header) from the file.
The default is False [https://docs.python.org/3.8/library/constants.html#False].

	Returns

	An MrcFile object (or a
GzipMrcFile object if the file is
gzipped).

	Raises

	
	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the mode is not one of r, r+ or w+.

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the file is not a valid MRC file and
 permissive is False [https://docs.python.org/3.8/library/constants.html#False].

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the mode is w+ and the file already exists.
 (Call new() with overwrite=True to deliberately overwrite
 an existing file.)

	OSError [https://docs.python.org/3.8/library/exceptions.html#OSError] – If the mode is r or r+ and the file does not
 exist.

	Warns

	
	RuntimeWarning – If the file appears to be a valid MRC file but the data
block is longer than expected from the dimensions in the header.

	RuntimeWarning – If the file is not a valid MRC file and permissive
is True [https://docs.python.org/3.8/library/constants.html#True].

	RuntimeWarning – If the header’s exttyp field is set to a known
value but the extended header’s size is not a multiple of the
number of bytes in the corresponding dtype.

	
mrcfile.load_functions.read(name)

	Read an MRC file’s data into a numpy array.

This is a convenience function to read the data from an MRC file when there is no
need for the file’s header information. To read the headers as well, or if you need
access to an MrcFile object representing the file, use
mrcfile.open() instead.

	Parameters

	name – The file name to read, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path].

	Returns

	A numpy array [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] containing the data from the file.

	
mrcfile.load_functions.write(name, data=None, overwrite=False, voxel_size=None)

	Write a new MRC file.

This is a convenience function to allow data to be quickly written to a file (with
optional compression) using just a single function call. However, there is no
control over the file’s metadata except for optionally setting the voxel size. For
more control, or if you need access to an MrcFile object
representing the new file, use mrcfile.new() instead.

	Parameters

	
	name – The file name to use, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path]. If the name
ends with .gz or .bz2, the file will be compressed using gzip or
bzip2 respectively.

	data – Data to put in the file, as a numpy array [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]. The default is None [https://docs.python.org/3.8/library/constants.html#None], to create an empty
file.

	overwrite – Flag to force overwriting of an existing file. If
False [https://docs.python.org/3.8/library/constants.html#False] and a file of the same name already exists, the file
is not overwritten and an exception is raised.

	voxel_size – float | 3-tuple
The voxel size to be written in the file header.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the file already exists and overwrite is
 False [https://docs.python.org/3.8/library/constants.html#False].

	Warns

	RuntimeWarning – If the data array contains Inf or NaN values.

	
mrcfile.load_functions.open_async(name, mode='r', permissive=False)

	Open an MRC file asynchronously in a separate thread.

This allows a file to be opened in the background while the main thread
continues with other work. This can be a good way to improve performance if
the main thread is busy with intensive computation, but will be less
effective if the main thread is itself busy with disk I/O.

Multiple files can be opened in the background simultaneously. However,
this implementation is relatively crude; each call to this function will
start a new thread and immediately use it to start opening a file. If you
try to open many large files at the same time, performance will decrease as
all of the threads attempt to access the disk at once. You’ll also risk
running out of memory to store the data from all the files.

This function returns a FutureMrcFile
object, which deliberately mimics the API of the
Future [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future] object from Python 3’s
concurrent.futures [https://docs.python.org/3.8/library/concurrent.futures.html#module-concurrent.futures] module. (Future versions of this library might
return genuine Future [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future] objects instead.)

To get the real MrcFile object from a
FutureMrcFile, call
result(). This will block until
the file has been read and the MrcFile object is
ready. To check if the MrcFile is ready without
blocking, call running() or
done().

	Parameters

	
	name – The file name to open, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path].

	mode – The file mode (one of r, r+ or w+).

	permissive – Read the file in permissive mode. The default is
False [https://docs.python.org/3.8/library/constants.html#False].

	Returns

	A FutureMrcFile object.

	
mrcfile.load_functions.mmap(name, mode='r', permissive=False)

	Open a memory-mapped MRC file.

This allows much faster opening of large files, because the data is only
accessed on disk when a slice is read or written from the data array. See
the MrcMemmap class documentation for more
information.

Because the memory-mapped data array accesses the disk directly, compressed
files cannot be opened with this function. In all other ways, mmap()
behaves in exactly the same way as open(). The
MrcMemmap object returned by this function can
be used in exactly the same way as a normal
MrcFile object.

	Parameters

	
	name – The file name to open, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path].

	mode – The file mode (one of r, r+ or w+).

	permissive – Read the file in permissive mode. The default is
False [https://docs.python.org/3.8/library/constants.html#False].

	Returns

	An MrcMemmap object.

	
mrcfile.load_functions.new_mmap(name, shape, mrc_mode=0, fill=None, overwrite=False, extended_header=None, exttyp=None)

	Create a new, empty memory-mapped MRC file.

This function is useful for creating very large files. The initial contents
of the data array can be set with the fill parameter if needed, but be
aware that filling a large array can take a long time.

If fill is not set, the new data array’s contents are unspecified and
system-dependent. (Some systems fill a new empty mmap with zeros, others
fill it with the bytes from the disk at the newly-mapped location.) If you
are definitely going to fill the entire array with new data anyway you can
safely leave fill as None [https://docs.python.org/3.8/library/constants.html#None], otherwise it is advised to use a
sensible fill value (or ensure you are on a system that fills new mmaps
with a reasonable default value).

	Parameters

	
	name – The file name to use, as a string or Path [https://docs.python.org/3.8/library/pathlib.html#pathlib.Path].

	shape – The shape of the data array to open, as a 2-, 3- or 4-tuple of
ints. For example, (nz, ny, nx) for a new 3D volume, or
(ny, nx) for a new 2D image.

	mrc_mode – The MRC mode to use for the new file. One of 0, 1, 2, 4 or 6,
which correspond to numpy dtypes as follows:

	mode 0 -> int8

	mode 1 -> int16

	mode 2 -> float32

	mode 4 -> complex64

	mode 6 -> uint16

The default is 0.

	fill – An optional value to use to fill the new data array. If
None [https://docs.python.org/3.8/library/constants.html#None], the data array will not be filled and its contents
are unspecified. Numpy’s usual rules for rounding or rejecting
values apply, according to the dtype of the array.

	overwrite – Flag to force overwriting of an existing file. If
False [https://docs.python.org/3.8/library/constants.html#False] and a file of the same name already exists, the file
is not overwritten and an exception is raised.

	extended_header – The extended header object

	exttyp – The extended header type

	Returns

	A new MrcMemmap object.

	Raises

	
	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the MRC mode is invalid.

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the file already exists and overwrite is
 False [https://docs.python.org/3.8/library/constants.html#False].

mrcfile.mrcfile module

mrcfile

Module which exports the MrcFile class.

	Classes:
	MrcFile: An object which represents an MRC file.

	
class mrcfile.mrcfile.MrcFile(name, mode='r', overwrite=False, permissive=False, header_only=False, **kwargs)

	Bases: MrcInterpreter

An object which represents an MRC file.

The header and data are handled as numpy arrays - see
MrcObject for details.

MrcFile supports a permissive read mode for attempting to open
corrupt or invalid files. See
mrcfile.mrcinterpreter.MrcInterpreter or the usage guide for more information.

	Usage:
	To create a new MrcFile object, pass a file name and optional mode. To
ensure the file is written to disk and closed correctly, it’s best to
use the with [https://docs.python.org/3.8/reference/compound_stmts.html#with] statement:

>>> with MrcFile('tmp.mrc', 'w+') as mrc:
... mrc.set_data(np.zeros((10, 10), dtype=np.int8))

In mode r or r+, the named file is opened from disk and read.
In mode w+ a new empty file is created and will be written to disk
at the end of the with [https://docs.python.org/3.8/reference/compound_stmts.html#with] block (or when
flush() or close() is called).

	
__init__(name, mode='r', overwrite=False, permissive=False, header_only=False, **kwargs)

	Initialise a new MrcFile object.

The given file name is opened in the given mode. For mode r or
r+ the header, extended header and data are read from the file. For
mode w+ a new file is created with a default header and empty
extended header and data arrays.

	Parameters

	
	name – The file name to open, as a string or pathlib Path.

	mode – The file mode to use. This should be one of the following:
r for read-only, r+ for read and write, or w+ for a
new empty file. The default is r.

	overwrite – Flag to force overwriting of an existing file if the
mode is w+. If False [https://docs.python.org/3.8/library/constants.html#False] and a file of the same name
already exists, the file is not overwritten and an exception is
raised. The default is False [https://docs.python.org/3.8/library/constants.html#False].

	permissive – Read the file in permissive mode. (See
mrcfile.mrcinterpreter.MrcInterpreter for details.)
The default is False [https://docs.python.org/3.8/library/constants.html#False].

	header_only – Only read the header (and extended header) from the
file. The default is False [https://docs.python.org/3.8/library/constants.html#False].

	Raises

	
	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the mode is not one of r, r+ or
 w+.

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the file is not a valid MRC file and
 permissive is False [https://docs.python.org/3.8/library/constants.html#False].

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the mode is w+, the file already exists
 and overwrite is False [https://docs.python.org/3.8/library/constants.html#False].

	OSError [https://docs.python.org/3.8/library/exceptions.html#OSError] – If the mode is r or r+ and the file does
 not exist.

	Warns

	
	RuntimeWarning – If the file appears to be a valid MRC file but the
data block is longer than expected from the dimensions in the
header.

	RuntimeWarning – If the file is not a valid MRC file and
permissive is True [https://docs.python.org/3.8/library/constants.html#True].

	RuntimeWarning – If the header’s exttyp field is set to a known
value but the extended header’s size is not a multiple of the
number of bytes in the corresponding dtype.

	
_open_file(name)

	Open a file object to use as the I/O stream.

	
_read(header_only=False)

	Override _read() to move back to start of file first.

	
_read_data()

	Override _read_data() to check file size matches data block size.

	
_get_file_size()

	Return the size of the underlying file object, in bytes.

	
close()

	Flush any changes to disk and close the file.

This override calls MrcInterpreter.close() to ensure the stream
is flushed and closed, then closes the file object.

	
_close_file()

	Close the file object.

	
validate(print_file=None)

	Validate this MRC file.

The tests are:

	MRC format ID string: The map field in the header should
contain “MAP “.

	Machine stamp: The machine stamp should contain one of
0x44 0x44 0x00 0x00, 0x44 0x41 0x00 0x00 or
0x11 0x11 0x00 0x00.

	MRC mode: the mode field should be one of the supported mode
numbers: 0, 1, 2, 4, 6 or 12. (Note that MRC modes 3 and 101 are
also valid according to the MRC 2014 specification but are not
supported by mrcfile.)

	Map and cell dimensions: The header fields nx, ny, nz,
mx, my, mz, cella.x, cella.y and cella.z
must all be positive numbers.

	Axis mapping: Header fields mapc, mapr and maps must
contain the values 1, 2, and 3 (in any order).

	Volume stack dimensions: If the spacegroup is in the range 401–630,
representing a volume stack, the nz field should be exactly
divisible by mz to represent the number of volumes in the stack.

	Header labels: The nlabl field should be set to indicate the
number of labels in use, and the labels in use should appear first
in the label array.

	MRC format version: The nversion field should be 20140 or 20141
for compliance with the MRC2014 standard.

	Extended header type: If an extended header is present, the
exttyp field should be set to indicate the type of extended
header.

	Data statistics: The statistics in the header should be correct for
the actual data in the file, or marked as undetermined.

	File size: The size of the file on disk should match the expected
size calculated from the MRC header.

	Parameters

	print_file – The output text stream to use for printing messages
about the validation. This is passed directly to the file
argument of Python’s print() [https://docs.python.org/3.8/library/functions.html#print] function. The default is
None [https://docs.python.org/3.8/library/constants.html#None], which means output will be printed to
sys.stdout [https://docs.python.org/3.8/library/sys.html#sys.stdout].

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if the file is valid, or False [https://docs.python.org/3.8/library/constants.html#False] if the file
does not meet the MRC format specification in any way.

mrcfile.mrcinterpreter module

mrcinterpreter

Module which exports the MrcInterpreter class.

	Classes:
	MrcInterpreter: An object which can interpret an I/O stream as MRC
data.

	
class mrcfile.mrcinterpreter.MrcInterpreter(iostream=None, permissive=False, header_only=False, **kwargs)

	Bases: MrcObject

An object which interprets an I/O stream as MRC / CCP4 map data.

The header and data are handled as numpy arrays - see
MrcObject for details.

MrcInterpreter can be used directly, but it is mostly intended as
a superclass to provide common stream-handling functionality. This can be
used by subclasses which will handle opening and closing the stream.

This class implements the __enter__() [https://docs.python.org/3.8/reference/datamodel.html#object.__enter__] and
__exit__() [https://docs.python.org/3.8/reference/datamodel.html#object.__exit__] special methods which allow it to be used by the
Python context manager in a with [https://docs.python.org/3.8/reference/compound_stmts.html#with] block. This ensures that
close() is called after the object is finished with.

When reading the I/O stream, a ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] is raised if the data is
invalid in one of the following ways:

	The header’s map field is not set correctly to confirm the file
type.

	The machine stamp is invalid and so the data’s byte order cannot be
determined.

	The mode number is not recognised. Currently accepted modes are 0, 1, 2,
4 and 6.

	The file is not large enough for the specified extended header size.

	The data block is not large enough for the specified data type and
dimensions.

MrcInterpreter offers a permissive read mode for handling
problematic files. If permissive is set to True [https://docs.python.org/3.8/library/constants.html#True] and any of the
validity checks fails, a warning [https://docs.python.org/3.8/library/warnings.html#module-warnings] is issued instead of an
exception, and file interpretation continues. If the mode number is invalid
or the data block is too small, the
data attribute will be set to
None [https://docs.python.org/3.8/library/constants.html#None]. In this case, it might be possible to inspect and correct the
header, and then call _read() again to read the data correctly. See
the usage guide for more details.

Methods:

	flush()

	close()

Methods relevant to subclasses:

	_read()

	_read_data()

	_read_bytearray_from_stream()

	
__init__(iostream=None, permissive=False, header_only=False, **kwargs)

	Initialise a new MrcInterpreter object.

This initialiser reads the stream if it is given. In general,
subclasses should call __init__() without giving an iostream
argument, then set the _iostream attribute themselves and call
_read() when ready.

To use the MrcInterpreter class directly, pass a stream when creating
the object (or for a write-only stream, create an MrcInterpreter with
no stream, call _create_default_attributes() and set the
_iostream attribute directly).

	Parameters

	
	iostream – The I/O stream to use to read and write MRC data. The
default is None [https://docs.python.org/3.8/library/constants.html#None].

	permissive – Read the stream in permissive mode. The default is
False [https://docs.python.org/3.8/library/constants.html#False].

	header_only – Only read the header (and extended header) from the
file. The default is False [https://docs.python.org/3.8/library/constants.html#False].

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If iostream is given, the data it contains
 cannot be interpreted as a valid MRC file and permissive
 is False [https://docs.python.org/3.8/library/constants.html#False].

	Warns

	RuntimeWarning – If iostream is given, the data it contains
cannot be interpreted as a valid MRC file and permissive
is True [https://docs.python.org/3.8/library/constants.html#True].

	
_read(header_only=False)

	Read the header, extended header and data from the I/O stream.

Before calling this method, the stream should be open and positioned at
the start of the header. This method will advance the stream to the end
of the data block (or the end of the extended header if header_only
is True [https://docs.python.org/3.8/library/constants.html#True].

	Parameters

	header_only – Only read the header and extended header from the
stream. The default is False [https://docs.python.org/3.8/library/constants.html#False].

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the data in the stream cannot be interpreted
 as a valid MRC file and permissive is False [https://docs.python.org/3.8/library/constants.html#False].

	Warns

	RuntimeWarning – If the data in the stream cannot be interpreted
as a valid MRC file and permissive is True [https://docs.python.org/3.8/library/constants.html#True].

	
_read_header()

	Read the MRC header from the I/O stream.

The header will be read from the current stream position, and the
stream will be advanced by 1024 bytes.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the data in the stream cannot be interpreted
 as a valid MRC file and permissive is False [https://docs.python.org/3.8/library/constants.html#False].

	Warns

	RuntimeWarning – If the data in the stream cannot be interpreted
as a valid MRC file and permissive is True [https://docs.python.org/3.8/library/constants.html#True].

	
_read_extended_header()

	Read the extended header from the stream.

If there is no extended header, a zero-length array is assigned to the
extended_header attribute.

The dtype is set as void ('V1').

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the stream is not long enough to contain the
 extended header indicated by the header and permissive
 is False [https://docs.python.org/3.8/library/constants.html#False].

	Warns

	RuntimeWarning – If the stream is not long enough to contain the
extended header indicated by the header and permissive
is True [https://docs.python.org/3.8/library/constants.html#True].

	
_read_data(max_bytes=0)

	Read the data array from the stream.

This method uses information from the header to set the data array’s
shape and dtype.

	Parameters

	max_bytes – Read at most this many bytes from the stream. If zero or
negative, the full size of the data block as defined in the header
will be read, even if this is very large.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the stream is not long enough to contain the
 data indicated by the header and permissive is
 False [https://docs.python.org/3.8/library/constants.html#False].

	Warns

	RuntimeWarning – If the stream is not long enough to contain the
data indicated by the header and permissive is
True [https://docs.python.org/3.8/library/constants.html#True].

	
_read_bytearray_from_stream(number_of_bytes)

	Read a bytearray [https://docs.python.org/3.8/library/stdtypes.html#bytearray] from the stream.

This default implementation relies on the stream implementing the
readinto() [https://docs.python.org/3.8/library/io.html#io.BufferedIOBase.readinto] method to avoid copying the new
array while creating the mutable bytearray [https://docs.python.org/3.8/library/stdtypes.html#bytearray]. Subclasses
should override this if their stream does not support
readinto() [https://docs.python.org/3.8/library/io.html#io.BufferedIOBase.readinto].

	Returns

	A 2-tuple of the bytearray [https://docs.python.org/3.8/library/stdtypes.html#bytearray] and the number of bytes that
were read from the stream.

	
close()

	Flush to the stream and clear the header and data attributes.

	
flush()

	Flush the header and data arrays to the I/O stream.

This implementation seeks to the start of the stream, writes the
header, extended header and data arrays, and then truncates the stream.

Subclasses should override this implementation for streams which do not
support seek() [https://docs.python.org/3.8/library/io.html#io.IOBase.seek] or truncate() [https://docs.python.org/3.8/library/io.html#io.IOBase.truncate].

mrcfile.mrcmemmap module

mrcmemmap

Module which exports the MrcMemmap class.

	Classes:
	MrcMemmap: An MrcFile subclass that uses a memory-mapped data
array.

	
class mrcfile.mrcmemmap.MrcMemmap(name, mode='r', overwrite=False, permissive=False, header_only=False, **kwargs)

	Bases: MrcFile

MrcFile subclass that uses a numpy memmap array [https://numpy.org/doc/stable/reference/generated/numpy.memmap.html#numpy.memmap]
for the data.

Using a memmap means that the disk access is done lazily: the data array
will only be read or written in small chunks when required. To access the
contents of the array, use the array slice operator.

Usage is the same as for MrcFile.

Note that memmap arrays use a fairly small chunk size and so performance
could be poor on file systems that are optimised for infrequent large I/O
operations.

If required, it is possible to create a very large empty file by creating a
new MrcMemmap and then calling _open_memmap() to create the memmap
array, which can then be filled slice-by-slice. Be aware that the contents
of a new, empty memmap array depend on your platform: the data values
could be garbage or zeros.

	
set_extended_header(extended_header)

	Replace the file’s extended header.

Note that the file’s entire data block must be moved if the extended
header size changes. Setting a new extended header can therefore be
very time consuming with large files, if the new extended header
occupies a different number of bytes than the previous one.

	
flush()

	Flush the header and data arrays to the file buffer.

	
_read_data()

	Read the data block from the file.

This method first calculates the parameters needed to read the data
(block start position, endian-ness, file mode, array shape) and then
opens the data as a numpy memmap array.

	
_open_memmap(dtype, shape)

	Open a new memmap array pointing at the file’s data block.

	
_close_data()

	Delete the existing memmap array, if it exists.

The array is flagged as read-only before deletion, so if a reference to
it has been kept elsewhere, changes to it should no longer be able to
change the file contents.

	
_set_new_data(data)

	Override of _set_new_data() to handle opening a new memmap and
copying data into it.

mrcfile.mrcobject module

mrcobject

Module which exports the MrcObject class.

	Classes:
	MrcObject: An object representing image or volume data in the MRC
format.

	
class mrcfile.mrcobject.MrcObject(**kwargs)

	Bases: object [https://docs.python.org/3.8/library/functions.html#object]

An object representing image or volume data in the MRC format.

The header, extended header and data are stored as numpy arrays and
exposed as read-only attributes. To replace the data or extended header,
call set_data() or set_extended_header(). The header cannot be
replaced but can be modified in place.

Voxel size is exposed as a writeable attribute, but is calculated
on-the-fly from the header’s cella and mx/my/mz fields.

Three-dimensional data can represent either a stack of 2D images, or a 3D
volume. This is indicated by the header’s ispg (space group) field,
which is set to 0 for image data and >= 1 for volume data. The
is_single_image(), is_image_stack(), is_volume() and
is_volume_stack() methods can be used to identify the type of
information stored in the data array. For 3D data, the
set_image_stack() and set_volume() methods can be used to
switch between image stack and volume interpretations of the data.

If the data contents have been changed, you can use the
update_header_from_data() and update_header_stats() methods to
make the header consistent with the data. These methods are called
automatically if the data array is replaced by calling set_data().
update_header_from_data() is fast, even with very large data arrays,
because it only examines the shape and type of the data array.
update_header_stats() calculates statistics from all items in the
data array and so can be slow for very large arrays. If necessary, the
reset_header_stats() method can be called to set the header fields to
indicate that the statistics are undetermined.

Attributes:

	header

	extended_header

	indexed_extended_header

	data

	voxel_size

	nstart

Methods:

	set_extended_header()

	set_data()

	is_single_image()

	is_image_stack()

	is_volume()

	is_volume_stack()

	set_image_stack()

	set_volume()

	update_header_from_data()

	update_header_stats()

	reset_header_stats()

	print_header()

	get_labels()

	add_label()

Attributes and methods relevant to subclasses:

	_read_only

	_check_writeable()

	_create_default_attributes()

	_close_data()

	_set_new_data()

	
__init__(**kwargs)

	Initialise a new MrcObject.

This initialiser deliberately avoids creating any arrays and simply
sets the header, extended header and data attributes to None [https://docs.python.org/3.8/library/constants.html#None].
This allows subclasses to call __init__() at the start of their
initialisers and then set the attributes themselves, probably by
reading from a file, or by calling _create_default_attributes()
for a new empty object.

Note that this behaviour might change in future: this initialiser could
take optional arguments to allow the header and data to be provided
by the caller, or might create the standard empty defaults rather than
setting the attributes to None [https://docs.python.org/3.8/library/constants.html#None].

	
_check_writeable()

	Check that this MRC object is writeable.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If this object is read-only.

	
_create_default_attributes()

	Set valid default values for the header and data attributes.

	
_create_default_header()

	Create a default MRC file header.

The header is initialised with standard file type and version
information, default values for some essential fields, and zeros
elsewhere. The first text label is also set to indicate the file was
created by this module.

	
property header

	Get the header as a numpy record array [https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray].

	
property extended_header

	Get the extended header as a numpy array [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

The dtype will be void (raw data, dtype V'). If the actual data type
of the extended header is known, the dtype of the array can be changed
to match. For supported types (e.g. 'FEI1' and 'FEI2'), the
indexed part of the extended header (excluding any zero padding) can be
accessed using indexed_extended_header().

The extended header may be modified in place. To replace it completely,
call set_extended_header().

	
property indexed_extended_header

	Get the indexed part of the extended header as a
numpy array [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] with the appropriate dtype set.

Currently only 'FEI1' and 'FEI2' extended headers are supported.
Modifications to the indexed extended header will not change the
extended header data recorded in this MrcObject. If the
extended header type is unrecognised or extended header data is not of
sufficient length a warning will be produced and the indexed extended
header will be None.

	
set_extended_header(extended_header)

	Replace the extended header.

If you set the extended header you should also set the
header.exttyp field to indicate the type of extended header.

	
property data

	Get the data as a numpy array [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	
set_data(data)

	Replace the data array.

This replaces the current data with the given array (or a copy of it),
and updates the header to match the new data dimensions. The data
statistics (min, max, mean and rms) stored in the header will also be
updated.

	Warns

	RuntimeWarning – If the data array contains Inf or NaN values.

	
_close_data()

	Close the data array.

	
_set_new_data(data)

	Replace the data array with a new one.

The new data array is not checked - it must already be valid for use in
an MRC file.

	
property voxel_size

	Get or set the voxel size in angstroms.

The voxel size is returned as a structured NumPy record array [https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray] with three fields (x, y and z). For example:

>>> mrc.voxel_size
rec.array((0.44825, 0.3925, 0.45874998),
 dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
>>> mrc.voxel_size.x
array(0.44825, dtype=float32)

Note that changing the voxel_size array in-place will not change the
voxel size in the file – to prevent this being overlooked
accidentally, the writeable flag is set to False [https://docs.python.org/3.8/library/constants.html#False] on the
voxel_size array.

To set the voxel size, assign a new value to the voxel_size attribute.
You may give a single number, a 3-tuple (x, y ,z) or a modified
version of the voxel_size array. The following examples are all
equivalent:

>>> mrc.voxel_size = 1.0

>>> mrc.voxel_size = (1.0, 1.0, 1.0)

>>> vox_sizes = mrc.voxel_size
>>> vox_sizes.flags.writeable = True
>>> vox_sizes.x = 1.0
>>> vox_sizes.y = 1.0
>>> vox_sizes.z = 1.0
>>> mrc.voxel_size = vox_sizes

	
_set_voxel_size(x_size, y_size, z_size)

	Set the voxel size.

	Parameters

	
	x_size – The voxel size in the X direction, in angstroms

	y_size – The voxel size in the Y direction, in angstroms

	z_size – The voxel size in the Z direction, in angstroms

	
property nstart

	Get or set the grid start locations.

This provides a convenient way to get and set the values of the
header’s nxstart, nystart and nzstart fields. Note that
these fields are integers and are measured in voxels, not angstroms.
The start locations are returned as a structured NumPy record
array [https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray] with three fields (x, y and z). For example:

>>> mrc.header.nxstart
array(0, dtype=int32)
>>> mrc.header.nystart
array(-21, dtype=int32)
>>> mrc.header.nzstart
array(-12, dtype=int32)
>>> mrc.nstart
rec.array((0, -21, -12),
 dtype=[('x', '<i4'), ('y', '<i4'), ('z', '<i4')])
>>> mrc.nstart.y
array(-21, dtype=int32)

Note that changing the nstart array in-place will not change the
values in the file – to prevent this being overlooked accidentally,
the writeable flag is set to False [https://docs.python.org/3.8/library/constants.html#False] on the nstart array.

To set the start locations, assign a new value to the nstart
attribute. You may give a single number, a 3-tuple (x, y ,z) or a
modified version of the nstart array. The following examples are all
equivalent:

>>> mrc.nstart = -150

>>> mrc.nstart = (-150, -150, -150)

>>> starts = mrc.nstart
>>> starts.flags.writeable = True
>>> starts.x = -150
>>> starts.y = -150
>>> starts.z = -150
>>> mrc.nstart = starts

	
_set_nstart(nxstart, nystart, nzstart)

	Set the grid start locations.

	Parameters

	
	nxstart – The location of the first column in the unit cell

	nystart – The location of the first row in the unit cell

	nzstart – The location of the first section in the unit cell

	
is_single_image()

	Identify whether the file represents a single image.

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if the data array is two-dimensional.

	
is_image_stack()

	Identify whether the file represents a stack of images.

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if the data array is three-dimensional and the space group
is zero.

	
is_volume()

	Identify whether the file represents a volume.

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if the data array is three-dimensional and the space
group is not zero.

	
is_volume_stack()

	Identify whether the file represents a stack of volumes.

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if the data array is four-dimensional.

	
set_image_stack()

	Change three-dimensional data to represent an image stack.

This method changes the space group number (header.ispg) to zero.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the data array is not three-dimensional.

	
set_volume()

	Change three-dimensional data to represent a volume.

If the space group was previously zero (representing an image stack),
this method sets it to one. Otherwise the space group is not changed.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the data array is not three-dimensional.

	
update_header_from_data()

	Update the header from the data array.

This function updates the header byte order and machine stamp to match
the byte order of the data. It also updates the file mode, space group
and the dimension fields nx, ny, nz, mx, my and
mz.

If the data is 2D, the space group is set to 0 (image stack). For 3D
data the space group is not changed, and for 4D data the space group is
set to 401 (simple P1 volume stack) unless it is already in the volume
stack range (401–630).

This means that new 3D data will be treated as an image stack if the
previous data was a single image or image stack, or as a volume if the
previous data was a volume or volume stack.

Note that this function does not update the data statistics fields in
the header (dmin, dmax, dmean and rms). Use the
update_header_stats() function to update the statistics.
(This is for performance reasons – updating the statistics can take a
long time for large data sets, but updating the other header
information is always fast because only the type and shape of the data
array need to be inspected.)

	
update_header_stats()

	Update the header’s dmin, dmax, dmean and rms fields
from the data.

Note that this can take some time with large files, particularly with
files larger than the currently available memory.

	Warns

	RuntimeWarning – If the data array contains Inf or NaN values.

	
reset_header_stats()

	Set the header statistics to indicate that the values are unknown.

	
print_header(print_file=None)

	Print the contents of all header fields.

	Parameters

	print_file – The output text stream to use for printing the header.
This is passed directly to the file argument of Python’s
print() [https://docs.python.org/3.8/library/functions.html#print] function. The default is None [https://docs.python.org/3.8/library/constants.html#None], which
means output will be printed to sys.stdout [https://docs.python.org/3.8/library/sys.html#sys.stdout].

	
get_labels()

	Get the labels from the MRC header.

Up to ten labels are stored in the header as arrays of 80 bytes. This method
returns the labels as Python strings, filtered to remove non-printable
characters. To access the raw bytes (including any non-printable characters) use
the header.label attribute (and note that header.nlabl stores the number
of labels currently set).

	Returns

	The labels, as a list of strings. The list will contain between 0 and 10
items, each containing up to 80 characters.

	
add_label(label)

	Add a label to the MRC header.

The new label will be stored after any labels already in the header. If all ten
labels are already in use, an exception will be raised.

Future versions of this method might add checks to ensure that labels containing
valid text are not overwritten even if the nlabl value is incorrect.

	Parameters

	label – The label value to store, as a string containing only printable
ASCII characters.

	Raises

	
	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the label is longer than 80 bytes or contains
 non-printable or non-ASCII characters.

	IndexError [https://docs.python.org/3.8/library/exceptions.html#IndexError] – If the file already contains 10 labels and so an
 additional label cannot be stored.

	
validate(print_file=None)

	Validate this MrcObject.

This method runs a series of tests to check whether this object
complies strictly with the MRC2014 format specification:

	MRC format ID string: The header’s map field must contain
“MAP “.

	Machine stamp: The machine stamp should contain one of
0x44 0x44 0x00 0x00, 0x44 0x41 0x00 0x00 or
0x11 0x11 0x00 0x00.

	MRC mode: the mode field should be one of the supported mode
numbers: 0, 1, 2, 4, 6 or 12. (Note that MRC modes 3 and 101 are
also valid according to the MRC 2014 specification but are not
supported by mrcfile.)

	Map and cell dimensions: The header fields nx, ny, nz,
mx, my, mz, cella.x, cella.y and cella.z
must all be positive numbers.

	Axis mapping: Header fields mapc, mapr and maps must
contain the values 1, 2, and 3 (in any order).

	Volume stack dimensions: If the spacegroup is in the range 401–630,
representing a volume stack, the nz field should be exactly
divisible by mz to represent the number of volumes in the stack.

	Header labels: The nlabl field should be set to indicate the
number of labels in use, and the labels in use should appear first
in the label array (that is, there should be no blank labels between
text-filled ones).

	MRC format version: The nversion field should be 20140 or 20141
for compliance with the MRC2014 standard.

	Extended header type: If an extended header is present, the
exttyp field should be set to indicate the type of extended
header.

	Data statistics: The statistics in the header should be correct for
the actual data, or marked as undetermined.

	Parameters

	print_file – The output text stream to use for printing messages
about the validation. This is passed directly to the file
argument of Python’s print() [https://docs.python.org/3.8/library/functions.html#print] function. The default is
None [https://docs.python.org/3.8/library/constants.html#None], which means output will be printed to
sys.stdout [https://docs.python.org/3.8/library/sys.html#sys.stdout].

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if this MrcObject is valid, or False [https://docs.python.org/3.8/library/constants.html#False] if it
does not meet the MRC format specification in any way.

mrcfile.utils module

utils

Utility functions used by the other modules in the mrcfile package.

Functions

	data_dtype_from_header(): Work out the data dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] from an MRC header.

	data_shape_from_header(): Work out the data array shape from an MRC
header

	mode_from_dtype(): Convert a numpy dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] to an
MRC mode number.

	dtype_from_mode(): Convert an MRC mode number to a numpy dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype].

	pretty_machine_stamp(): Get a nicely-formatted string from a machine
stamp.

	machine_stamp_from_byte_order(): Get a machine stamp from a byte order
indicator.

	byte_orders_equal(): Compare two byte order indicators for equal
endianness.

	normalise_byte_order(): Convert a byte order indicator to < or
>.

	spacegroup_is_volume_stack(): Identify if a space group number
represents a volume stack.

	
mrcfile.utils.data_dtype_from_header(header)

	Return the data dtype indicated by the given header.

This function calls dtype_from_mode() to get the basic dtype, and
then makes sure that the byte order of the new dtype matches the byte order
of the header’s mode field.

	Parameters

	header – An MRC header as a numpy record array [https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray].

	Returns

	The numpy dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] object for the data array
corresponding to the given header.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If there is no corresponding dtype for the given
 mode.

	
mrcfile.utils.data_shape_from_header(header)

	Return the data shape indicated by the given header.

	Parameters

	header – An MRC header as a numpy record array [https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray].

	Returns

	The shape tuple for the data array corresponding to the given header.

	
mrcfile.utils.mode_from_dtype(dtype)

	Return the MRC mode number corresponding to the given numpy
dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype].

The conversion is as follows:

	float16 -> mode 12

	float32 -> mode 2

	int8 -> mode 0

	int16 -> mode 1

	uint8 -> mode 6 (data will be widened to 16 bits in the file)

	uint16 -> mode 6

	complex64 -> mode 4

Note that there is no numpy dtype which corresponds to MRC mode 3.

	Parameters

	dtype – A numpy dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] object.

	Returns

	The MRC mode number.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If there is no corresponding MRC mode for the given
 dtype.

	
mrcfile.utils.dtype_from_mode(mode)

	Return the numpy dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] corresponding to the given
MRC mode number.

The mode parameter may be given as a Python scalar, numpy scalar or
single-item numpy array.

The conversion is as follows:

	mode 0 -> int8

	mode 1 -> int16

	mode 2 -> float32

	mode 4 -> complex64

	mode 6 -> uint16

	mode 12 -> float16

Note that modes 3 and 101 are not supported as there is no matching numpy dtype.

	Parameters

	mode – The MRC mode number. This may be given as any type which can be
converted to an int, for example a Python scalar (int or
float), a numpy scalar or a single-item numpy array.

	Returns

	The numpy dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] object corresponding to the
given mode.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If there is no corresponding dtype for the given
 mode, or if mode is an array and does not contain exactly one
 item.

	
mrcfile.utils.pretty_machine_stamp(machst)

	Return a human-readable hex string for a machine stamp.

	
mrcfile.utils.byte_order_from_machine_stamp(machst)

	Return the byte order corresponding to the given machine stamp.

	Parameters

	machst – The machine stamp, as a bytearray [https://docs.python.org/3.8/library/stdtypes.html#bytearray] or a numpy
array [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] of bytes.

	Returns

	< if the machine stamp represents little-endian data, or > if
it represents big-endian.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the machine stamp is invalid.

	
mrcfile.utils.machine_stamp_from_byte_order(byte_order='=')

	Return the machine stamp corresponding to the given byte order
indicator.

	Parameters

	byte_order – The byte order indicator: one of =, < or >, as
defined and used by numpy dtype objects.

	Returns

	The machine stamp which corresponds to the given byte order, as a
bytearray [https://docs.python.org/3.8/library/stdtypes.html#bytearray]. This will be either (0x44, 0x44, 0, 0) for
little-endian or (0x11, 0x11, 0, 0) for big-endian. If the given
byte order indicator is =, the native byte order is used.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the byte order indicator is unrecognised.

	
mrcfile.utils.byte_orders_equal(a, b)

	Work out if the byte order indicators represent the same endianness.

	Parameters

	
	a – The first byte order indicator: one of =, < or >, as
defined and used by numpy dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] objects.

	b – The second byte order indicator.

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if the byte order indicators represent the same
endianness.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the byte order indicator is not recognised.

	
mrcfile.utils.normalise_byte_order(byte_order)

	Convert a numpy byte order indicator to one of < or >.

	Parameters

	byte_order – One of =, < or >.

	Returns

	< if the byte order indicator represents little-endian data, or
> if it represents big-endian. Therefore on a little-endian
machine, = will be converted to <, but on a big-endian machine
it will be converted to >.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If byte_order is not one of =, < or
 >.

	
mrcfile.utils.spacegroup_is_volume_stack(ispg)

	Identify if the given space group number represents a volume stack.

	Parameters

	ispg – The space group number, as an integer, numpy scalar or single-
element numpy array.

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if the space group number is in the range 401–630.

	
mrcfile.utils.is_printable_ascii(string_)

	Check if a string is entirely composed of printable ASCII characters.

	
mrcfile.utils.printable_string_from_bytes(bytes_)

	Convert bytes into a printable ASCII string by removing non-printable characters.

	
mrcfile.utils.bytes_from_string(string_)

	Convert a string to bytes.

Even though this is a one-liner, the details are tricky to get right so things work
properly in both Python 2 and 3. It’s broken out as a separate function so it can be
thoroughly tested.

	Raises

	UnicodeError [https://docs.python.org/3.8/library/exceptions.html#UnicodeError] – If the input contains non-ASCII characters.

mrcfile.validator module

validator

Module for top-level functions that validate MRC files.

This module is runnable to allow files to be validated easily from the command
line.

	
mrcfile.validator.main(args=None)

	Validate a list of MRC files given as command arguments.

The return value is used as the process exit code when this function is
called by running this module or from the corresponding console_scripts
entry point.

	Returns

	0 if all command arguments are names of valid MRC files. 1 if
no file names are given or any of the files is not a valid MRC file.

	
mrcfile.validator.validate_all(names, print_file=None)

	Validate a list of MRC files.

This function calls validate() for each file name in the given list.

	Parameters

	
	names – A sequence of file names to open and validate.

	print_file – The output text stream to use for printing messages about
the validation. This is passed directly to the print_file
argument of the validate() function. The default is
None [https://docs.python.org/3.8/library/constants.html#None], which means output will be printed to
sys.stdout [https://docs.python.org/3.8/library/sys.html#sys.stdout].

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if all of the files are valid, or False [https://docs.python.org/3.8/library/constants.html#False] if any of
the files do not meet the MRC format specification in any way.

	Raises

	OSError [https://docs.python.org/3.8/library/exceptions.html#OSError] – If one of the files does not exist or cannot be opened.

	Warns

	RuntimeWarning – If one of the files is seriously invalid because it has
no map ID string, an incorrect machine stamp, an unknown mode
number, or is not the same size as expected from the header.

	
mrcfile.validator.validate(name, print_file=None)

	Validate an MRC file.

This function first opens the file by calling open() (with
permissive=True), then calls validate(),
which runs a series of tests to check whether the file complies with the
MRC2014 format specification.

If the file is completely valid, this function returns True [https://docs.python.org/3.8/library/constants.html#True],
otherwise it returns False [https://docs.python.org/3.8/library/constants.html#False]. Messages explaining the validation
result will be printed to sys.stdout [https://docs.python.org/3.8/library/sys.html#sys.stdout] by default, but if a text
stream is given (using the print_file argument) output will be printed
to that instead.

Badly invalid files will also cause warning [https://docs.python.org/3.8/library/warnings.html#module-warnings] messages to
be issued, which will be written to sys.stderr [https://docs.python.org/3.8/library/sys.html#sys.stderr] by default. See the
documentation of the warnings [https://docs.python.org/3.8/library/warnings.html#module-warnings] module for information on how to
suppress or capture warning output.

Because the file is opened by calling open() [https://docs.python.org/3.8/library/functions.html#open], gzip- and
bzip2-compressed MRC files can be validated easily using this function.

After the file has been opened, it is checked for problems. The tests are:

	MRC format ID string: The map field in the header should contain
“MAP “.

	Machine stamp: The machine stamp should contain one of
0x44 0x44 0x00 0x00, 0x44 0x41 0x00 0x00 or
0x11 0x11 0x00 0x00.

	MRC mode: the mode field should be one of the supported mode
numbers: 0, 1, 2, 4, 6 or 12. (Note that MRC modes 3 and 101 are also
valid according to the MRC 2014 specification but are not supported by
mrcfile.)

	Map and cell dimensions: The header fields nx, ny, nz,
mx, my, mz, cella.x, cella.y and cella.z must
all be positive numbers.

	Axis mapping: Header fields mapc, mapr and maps must contain
the values 1, 2, and 3 (in any order).

	Volume stack dimensions: If the spacegroup is in the range 401–630,
representing a volume stack, the nz field should be exactly
divisible by mz to represent the number of volumes in the stack.

	Header labels: The nlabl field should be set to indicate the number
of labels in use, and the labels in use should appear first in the label
array.

	MRC format version: The nversion field should be 20140 or 20141 for
compliance with the MRC2014 standard.

	Extended header type: If an extended header is present, the exttyp
field should be set to indicate the type of extended header.

	Data statistics: The statistics in the header should be correct for the
actual data in the file, or marked as undetermined.

	File size: The size of the file on disk should match the expected size
calculated from the MRC header.

	Parameters

	
	name – The file name to open and validate.

	print_file – The output text stream to use for printing messages about
the validation. This is passed directly to the file argument of
Python’s print() [https://docs.python.org/3.8/library/functions.html#print] function. The default is None [https://docs.python.org/3.8/library/constants.html#None], which
means output will be printed to sys.stdout [https://docs.python.org/3.8/library/sys.html#sys.stdout].

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if the file is valid, or False [https://docs.python.org/3.8/library/constants.html#False] if the file does
not meet the MRC format specification in any way.

	Raises

	OSError [https://docs.python.org/3.8/library/exceptions.html#OSError] – If the file does not exist or cannot be opened.

	Warns

	RuntimeWarning – If the file is seriously invalid because it has no map
ID string, an incorrect machine stamp, an unknown mode number, or
is not the same size as expected from the header.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mrcfile	

 	
 	
 mrcfile.bzip2mrcfile	

 	
 	
 mrcfile.command_line	

 	
 	
 mrcfile.constants	

 	
 	
 mrcfile.dtypes	

 	
 	
 mrcfile.future_mrcfile	

 	
 	
 mrcfile.gzipmrcfile	

 	
 	
 mrcfile.load_functions	

 	
 	
 mrcfile.mrcfile	

 	
 	
 mrcfile.mrcinterpreter	

 	
 	
 mrcfile.mrcmemmap	

 	
 	
 mrcfile.mrcobject	

 	
 	
 mrcfile.utils	

 	
 	
 mrcfile.validator	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | V
 | W

_

 	
 	__init__() (mrcfile.future_mrcfile.FutureMrcFile method)

 	(mrcfile.mrcfile.MrcFile method)

 	(mrcfile.mrcinterpreter.MrcInterpreter method)

 	(mrcfile.mrcobject.MrcObject method)

 	_check_writeable() (mrcfile.mrcobject.MrcObject method)

 	_close_data() (mrcfile.mrcmemmap.MrcMemmap method)

 	(mrcfile.mrcobject.MrcObject method)

 	_close_file() (mrcfile.gzipmrcfile.GzipMrcFile method)

 	(mrcfile.mrcfile.MrcFile method)

 	_create_default_attributes() (mrcfile.mrcobject.MrcObject method)

 	_create_default_header() (mrcfile.mrcobject.MrcObject method)

 	_ensure_readable_bzip2_stream() (mrcfile.bzip2mrcfile.Bzip2MrcFile method)

 	_ensure_readable_gzip_stream() (mrcfile.gzipmrcfile.GzipMrcFile method)

 	_get_file_size() (mrcfile.bzip2mrcfile.Bzip2MrcFile method)

 	(mrcfile.gzipmrcfile.GzipMrcFile method)

 	(mrcfile.mrcfile.MrcFile method)

 	_get_result() (mrcfile.future_mrcfile.FutureMrcFile method)

 	_open_file() (mrcfile.bzip2mrcfile.Bzip2MrcFile method)

 	(mrcfile.gzipmrcfile.GzipMrcFile method)

 	(mrcfile.mrcfile.MrcFile method)

 	
 	_open_memmap() (mrcfile.mrcmemmap.MrcMemmap method)

 	_read() (mrcfile.bzip2mrcfile.Bzip2MrcFile method)

 	(mrcfile.gzipmrcfile.GzipMrcFile method)

 	(mrcfile.mrcfile.MrcFile method)

 	(mrcfile.mrcinterpreter.MrcInterpreter method)

 	_read_bytearray_from_stream() (mrcfile.bzip2mrcfile.Bzip2MrcFile method)

 	(mrcfile.mrcinterpreter.MrcInterpreter method)

 	_read_data() (mrcfile.mrcfile.MrcFile method)

 	(mrcfile.mrcinterpreter.MrcInterpreter method)

 	(mrcfile.mrcmemmap.MrcMemmap method)

 	_read_extended_header() (mrcfile.mrcinterpreter.MrcInterpreter method)

 	_read_header() (mrcfile.mrcinterpreter.MrcInterpreter method)

 	_run() (mrcfile.future_mrcfile.FutureMrcFile method)

 	_set_new_data() (mrcfile.mrcmemmap.MrcMemmap method)

 	(mrcfile.mrcobject.MrcObject method)

 	_set_nstart() (mrcfile.mrcobject.MrcObject method)

 	_set_voxel_size() (mrcfile.mrcobject.MrcObject method)

A

 	
 	add_done_callback() (mrcfile.future_mrcfile.FutureMrcFile method)

 	
 	add_label() (mrcfile.mrcobject.MrcObject method)

B

 	
 	byte_order_from_machine_stamp() (in module mrcfile.utils)

 	byte_orders_equal() (in module mrcfile.utils)

 	
 	bytes_from_string() (in module mrcfile.utils)

 	Bzip2MrcFile (class in mrcfile.bzip2mrcfile)

C

 	
 	cancel() (mrcfile.future_mrcfile.FutureMrcFile method)

 	cancelled() (mrcfile.future_mrcfile.FutureMrcFile method)

 	
 	close() (mrcfile.mrcfile.MrcFile method)

 	(mrcfile.mrcinterpreter.MrcInterpreter method)

D

 	
 	data (mrcfile.mrcobject.MrcObject property)

 	data_dtype_from_header() (in module mrcfile.utils)

 	
 	data_shape_from_header() (in module mrcfile.utils)

 	done() (mrcfile.future_mrcfile.FutureMrcFile method)

 	dtype_from_mode() (in module mrcfile.utils)

E

 	
 	exception() (mrcfile.future_mrcfile.FutureMrcFile method)

 	
 	extended_header (mrcfile.mrcobject.MrcObject property)

F

 	
 	flush() (mrcfile.bzip2mrcfile.Bzip2MrcFile method)

 	(mrcfile.gzipmrcfile.GzipMrcFile method)

 	(mrcfile.mrcinterpreter.MrcInterpreter method)

 	(mrcfile.mrcmemmap.MrcMemmap method)

 	
 	FutureMrcFile (class in mrcfile.future_mrcfile)

G

 	
 	get_ext_header_dtype() (in module mrcfile.dtypes)

 	
 	get_labels() (mrcfile.mrcobject.MrcObject method)

 	GzipMrcFile (class in mrcfile.gzipmrcfile)

H

 	
 	header (mrcfile.mrcobject.MrcObject property)

I

 	
 	indexed_extended_header (mrcfile.mrcobject.MrcObject property)

 	is_image_stack() (mrcfile.mrcobject.MrcObject method)

 	is_printable_ascii() (in module mrcfile.utils)

 	
 	is_single_image() (mrcfile.mrcobject.MrcObject method)

 	is_volume() (mrcfile.mrcobject.MrcObject method)

 	is_volume_stack() (mrcfile.mrcobject.MrcObject method)

M

 	
 	machine_stamp_from_byte_order() (in module mrcfile.utils)

 	main() (in module mrcfile.validator)

 	mmap() (in module mrcfile)

 	(in module mrcfile.load_functions)

 	mode_from_dtype() (in module mrcfile.utils)

 	
 module

 	mrcfile

 	mrcfile.bzip2mrcfile

 	mrcfile.command_line

 	mrcfile.constants

 	mrcfile.dtypes

 	mrcfile.future_mrcfile

 	mrcfile.gzipmrcfile

 	mrcfile.load_functions

 	mrcfile.mrcfile

 	mrcfile.mrcinterpreter

 	mrcfile.mrcmemmap

 	mrcfile.mrcobject

 	mrcfile.utils

 	mrcfile.validator

 	
 mrcfile

 	module

 	MrcFile (class in mrcfile.mrcfile)

 	
 mrcfile.bzip2mrcfile

 	module

 	
 mrcfile.command_line

 	module

 	
 	
 mrcfile.constants

 	module

 	
 mrcfile.dtypes

 	module

 	
 mrcfile.future_mrcfile

 	module

 	
 mrcfile.gzipmrcfile

 	module

 	
 mrcfile.load_functions

 	module

 	
 mrcfile.mrcfile

 	module

 	
 mrcfile.mrcinterpreter

 	module

 	
 mrcfile.mrcmemmap

 	module

 	
 mrcfile.mrcobject

 	module

 	
 mrcfile.utils

 	module

 	
 mrcfile.validator

 	module

 	MrcInterpreter (class in mrcfile.mrcinterpreter)

 	MrcMemmap (class in mrcfile.mrcmemmap)

 	MrcObject (class in mrcfile.mrcobject)

N

 	
 	new() (in module mrcfile)

 	(in module mrcfile.load_functions)

 	new_mmap() (in module mrcfile)

 	(in module mrcfile.load_functions)

 	
 	normalise_byte_order() (in module mrcfile.utils)

 	nstart (mrcfile.mrcobject.MrcObject property)

O

 	
 	open() (in module mrcfile)

 	(in module mrcfile.load_functions)

 	
 	open_async() (in module mrcfile)

 	(in module mrcfile.load_functions)

P

 	
 	pretty_machine_stamp() (in module mrcfile.utils)

 	print_header() (mrcfile.mrcobject.MrcObject method)

 	
 	print_headers() (in module mrcfile.command_line)

 	printable_string_from_bytes() (in module mrcfile.utils)

R

 	
 	read() (in module mrcfile)

 	(in module mrcfile.load_functions)

 	
 	reset_header_stats() (mrcfile.mrcobject.MrcObject method)

 	result() (mrcfile.future_mrcfile.FutureMrcFile method)

 	running() (mrcfile.future_mrcfile.FutureMrcFile method)

S

 	
 	set_data() (mrcfile.mrcobject.MrcObject method)

 	set_extended_header() (mrcfile.mrcmemmap.MrcMemmap method)

 	(mrcfile.mrcobject.MrcObject method)

 	
 	set_image_stack() (mrcfile.mrcobject.MrcObject method)

 	set_volume() (mrcfile.mrcobject.MrcObject method)

 	spacegroup_is_volume_stack() (in module mrcfile.utils)

U

 	
 	update_header_from_data() (mrcfile.mrcobject.MrcObject method)

 	
 	update_header_stats() (mrcfile.mrcobject.MrcObject method)

V

 	
 	validate() (in module mrcfile)

 	(in module mrcfile.validator)

 	(mrcfile.mrcfile.MrcFile method)

 	(mrcfile.mrcobject.MrcObject method)

 	
 	validate_all() (in module mrcfile.validator)

 	voxel_size (mrcfile.mrcobject.MrcObject property)

W

 	
 	write() (in module mrcfile)

 	(in module mrcfile.load_functions)

 nav.xhtml

 Table of Contents

 		
 Documentation for mrcfile.py

 		
 Overview of mrcfile.py

 		
 Key Features

 		
 Installation

 		
 Basic usage

 		
 Documentation

 		
 Citing mrcfile

 		
 Contributing

 		
 Licence

 		
 Usage Guide

 		
 Opening MRC files

 		
 Normal file access

 		
 Simple data access

 		
 Handling compressed files

 		
 Closing files and writing to disk

 		
 MrcFile subclasses

 		
 File modes

 		
 Permissive read mode

 		
 A note on axis ordering

 		
 Using MrcFile objects

 		
 Accessing the header and data

 		
 Indexing the extended header

 		
 Voxel size

 		
 Keeping the header and data in sync

 		
 Data dimensionality

 		
 Data types

 		
 Dealing with large files

 		
 Memory-mapped files

 		
 Asynchronous opening

 		
 Validating MRC files

 		
 Command line usage

 		
 Validation

 		
 Examining MRC headers

 		
 API overview

 		
 Class hierarchy

 		
 MrcFile attributes and methods

 		
 Source documentation

 		
 mrcfile – Main package

 		
 mrcfile

 		
 Submodules

 		
 mrcfile.bzip2mrcfile module

 		
 bzip2mrcfile

 		
 mrcfile.command_line module

 		
 command_line

 		
 mrcfile.constants module

 		
 constants

 		
 mrcfile.dtypes module

 		
 dtypes

 		
 mrcfile.future_mrcfile module

 		
 future_mrcfile

 		
 mrcfile.gzipmrcfile module

 		
 gzipmrcfile

 		
 mrcfile.load_functions module

 		
 load_functions

 		
 mrcfile.mrcfile module

 		
 mrcfile

 		
 mrcfile.mrcinterpreter module

 		
 mrcinterpreter

 		
 mrcfile.mrcmemmap module

 		
 mrcmemmap

 		
 mrcfile.mrcobject module

 		
 mrcobject

 		
 mrcfile.utils module

 		
 utils

 		
 Functions

 		
 mrcfile.validator module

 		
 validator

_static/file.png

_static/minus.png

_static/plus.png

